It might yet prove possible to account for the observed high-redshift $(z\sim4)$ quasar populations with ... conventional cosmic structure formation theory

--- Ed Turner 1991

The Highest Redshift Quasars: Growth of Supermassive BHs and Their Environment at z=6-7

Xiaohui Fan (University of Arizona) KITP Feb 2012

Collaborators: DeCarli, de Rosa, Jiang, McGreer, Morganson, Wang, Carilli, Kurk, Walter, Vestergaard +

Background: 46,420 Quasars from the SDSS Data Release Three

The New Highest Redshift Quasar at z=7.085 from UKIDSS

Mortlock et al. 2011

Accelerated Evolution at z>5.7

Quasar near-zone Sizes

Shapiro, Haiman, Mesinger, Wyithe, Loeb, Bolton, Haehnelt, Maselli et al.

• Size of HII region

 $R_{s}\!\sim (L_{Q} \; t_{Q} \; / \; f_{\rm HI} \;)^{1/3}$

- near-zone size evolution consistent with rapid increase of neutral fraction at z>6
- Can be applied to higher z and f_{HI} with lower S/N data

Fan et al. 2006 Carilli et al. 2011

z~7 quasar near zone

- HII region size much smaller at $z\sim7$
- f(HI) >=0.1

Mortlock et al. 2011 Bolton et al. 2011

z~7 quasar: first IGM damping wing?

substantial damping wing: f(HI)>=0.1
 Mortlock et al. 2011

Probing Reionization History

Fan, Carilli & Keating 2006

Quasar Evolution at z~6

- Strong density evolution
 - Density declines by a factor of ~40 from between z~2.5 and z~6
- Black hole mass measurements
 - $M_{BH} \sim 10^{9-10} M_{sun}$
 - $-~M_{halo}\sim 10^{12\text{--}13}~M_{sun}$
 - rare, 5-6 sigma peaks at z~6 (density of 1 per Gpc³⁾
- How to form these BHs???

Quasars are accreting at close to Eddington limit at z~6

de Rosa et al. 2011

- $M_{BH} \sim (FHWM)^2 L^{0.5}$ based on MgII line
 - factor of ~3 accuracy on individual measurements

Are there luminous quasars at z>>7

- Black Holes do not grow arbitrarily fast
 - Accretion onto BHs dictated by Eddington Limit
 - E-folding time of **maximum** supermassive BH growth: 40 Myr
 - At z=7: age of the universe: 800 Myr = maximum 20 e-folding
- Billion solar mass BH at z>7
 - Non-stop, maximum accretion from 100 solar mass BHs at z=15 (collapse of first stars in the Universe)
 - Theoretically difficult for formation of z>7 billion solar mass BHs
 - What if we find them:
 - Direct collapse of "intermediate" mass BHs?
 - More efficient accretion model "super-Eddington"?

Steepening of quasar luminosity function at z~6

McGreer et al. in prep

- quasars not important contributor to reionization
- is BH growth starting to be limited by the number of eholding available?
- high lensing probability?

Lensing

- HST SNAP Survey
 - 30 quasars at z~6 observed
 - two lenses discovered
 - compared to HST SNAP of z~4 quasars: 150 observe, none found
 - constraints on quasar luminosity function slope
 - access to much fainter quasars

z=6.10

McGreer, XF et al.

non-evolution of quasar emission

- Rapid chemical enrichment in quasar vicinity
- Quasar env has supersolar metallicity : no metallicity evolution
- High-z quasars are *old*, **not yet first quasars**, **and live in metal enriched env** similar to centers of massive galaxies

Even at z>7

Mortlock et al. 2011

Disappearance of Dust Torus at z~6?

typical

J0005

- 3.5μm 4.8μm 5.6μm 8.0μm 16μm 24μm
- quasars with no hot dust
 - Spitzer SEDs consistent with disk continuum only
 - No similar objects known at low-z
 - no enough time to form hot dust tori? Or formed in metal-free environment?

Jiang, XF et al. 2010

Epoch of first quasars?

Dust-free quasars:

- Only at the highest redshift
- With the smallest BH mass
- First generation supermassive BHs from metal-free environment?
- How are they related to Pop III?

Sub-mm and Radio Observation of High-z Quasars

- Probing dust and star formation in the most massive high-z systems
- Advantage:
 - No AGN contamination
 - Give measurements to
 - Star formation rate
 - Gas morphology
 - Gas kinematics
- ALMA!

Star Formation in z~6 Quasars

- 30% of z~6 quasars detected at 1mJy level in 1-mm ->
 - L_{FIR}~ 10^{13} L_{sun}
 - T~50K
 - SFR~1000 M_{sun}yr⁻¹ (if dust heated by SB)
- submm-faint quasars also show detections after stacking
 - average SFR > 100
 M_{sun}yr⁻¹

Wang et al. 2008, 2009,2011

Maximum starburst in z=6.4 quasar ?

Spatially resolved CO and [CII] emissions:

- Size: ~1.5 kpc from [CII] (0.3")
- Star formation intensity of: ~1000 M_{sun}yr⁻¹kpc⁻²
 - Eddington limited maximum star formation rate (Thompson et al.)?
 - Gas supply exhaused over a few t_{dyn}
- Similar SF intensity to Arp 200 but 100 times larger!
- Dynamical mass:
 - CO/CII line width ~300km/s
 - Dynamical mass $\sim 10^{11} M_{sun?}$
 - BH formed earlier than completion of galaxy assembly?

Ð.

Velocity offset [km/s]

500

Walter et al. 2009

Evolution (lack) of M-sigma Relation?

Wang et al. 2008, 2010, 2011

Summary

- Luminous quasars existed at z>7
 - fast BH growth; challenges Eddington-limited accretion from stellar seeds
- Quasars looked normal at z~6-7
 - intense star formation and rapid enrichment in quasar environment
- Quasar hosts had modest masses at z~6
 - current day M-sigma relation not yet established
- Strong evolution of IGM absorptions at z~6-7
 - Reionization not yet completed by $z\sim7$