Metallicity and Kinematic Evolution of Damped Lyu Systems to z~5

Art Wolfe

Marc Rafelski: IPAC
Marcel Neeleman: UCSD
J. Xavier Prochaska: UCSC

Damped Ly α Absorption Systems

-Definition of Damped Ly α System (DLA): $\mathrm{N}(\mathrm{HI}) \geq 2 \diamond 10^{20} \mathrm{~cm}^{-2}$
-Distinguishing characteristics of DLAs :
(1) Gas is Neutral
(2) Metallicity is low: $[\mathrm{M} / \mathrm{H}]=-1.5$
-DLAs dominate the neutral-gas content of the Universe out to $\mathrm{z}=5$
-DLAs cover $1 / 3$ of the sky at $\mathrm{z}=[2.5,3.5]$
$\cdot \Omega_{\mathrm{gas}} \approx 0.5 \Omega_{\text {visible }}$

What are DLAs?

A long standing debate

Haehnelt (2012)

How are DLAs Related to Galaxies?

-Do DLA metallicities resemble those of known stellar populations?
-Size, Mass of Galaxies Hosting DLAs?
-Origin of DLA kinematics?
-Do DLAs exhibit a mass-metallicity relation?

Outline

- Results of Survey for high-redshift (z=4-5.2) DLAs: Metal Abundances
- DLA Kinematics: velocity-interval distribution, and its relation to metal abundances and redshift

1. Keck ESI Survey for DLAs at $\mathrm{z}_{\mathrm{abs}}>4$:
--Metal Abundances of DLAs
(Rafelski, Wolfe, \& Prochaska 2012)

ESI Survey for high-z DLAs

- 25 quasar spectra
- 30 DLAs with $\mathrm{z}>4$

Gallery of ESI Damped Ly α Profiles

DLA Metal Abundances

-Based on H I and low-ion column densities

- No ionization corrections required since $(\mathrm{X} / \mathrm{H})=\left(\mathrm{X}^{+} / \mathrm{H}^{0}\right)$
--Ionization potential of $\mathrm{X}^{+}>1$ Ryd and of $\mathrm{X}^{0}<1$ Ryd
--Thus starlight (hv<1 Ryd) can photo-ionize X^{0} to X^{+}
-- But X^{+}shielded from photo-ionization

DLA-J0817+13, z=4.2584: HIRES velocity profiles

DLA-J0817+13, $\mathrm{z}=4.2584,[\mathrm{M} / \mathrm{H}]=-1.15 \pm 0.15$

Metal Abundance SII

DLA-J1203 $+32, \mathrm{z}=5.0647$

Relative Velocity ($\mathrm{km} \mathrm{s}^{-1}$)

DLA-J1203+32, $\mathrm{z}=5.0647,[\mathrm{M} / \mathrm{H}]=-2.66 \pm 0.16$

Metal Abundance OI

Relative Velocity ($\mathrm{km} \mathrm{s}^{-1}$)

Metal Abundances and $<\mathrm{Z}>$ versus redshift (2004 sample)

Metal Abundances and $<Z>$ versus redshift (Prochaska etal 2003)

Metal Abundances and $<Z>$ versus Redshift (Rafelski etal 2012)

Metal Abundances and <Z> vs Redshift (Rafelski etal '12)

Mean $[\mathrm{M} / \mathrm{H}]=-1.50, \sigma_{[\mathrm{M} / \mathrm{H}]}=0.55$

Metal Abundances versus look-back time

Abundance Histograms: DLAs and Stellar Populations

DLAs
(a) Thin Disk Stars

(b) Thick Disk Stars

(c) Halo Stars

[$\alpha / \mathrm{Fe}]$ Distribution: DLAs are α Enhanced

[$\alpha / \mathrm{Fe}]$ Distribution Consistent with Halo Stars

(a) $z>2$ DLAs

(b) $z>2$ and $[\mathrm{M} / \mathrm{H}]<-1$ DLAs

Dependence of $[\alpha / \mathrm{Fe}]$ on Metal Abundance

Dependence of $[\alpha / \mathrm{Fe}]$ on Metal Abundance

2. Keck HIRES study of DLA kinematics
(Neeleman, Wolfe, Prochaska \& Rafelski 2012)

Low-ion (Si II, Zn II, etc.) optical depth profiles

0.8
0.8
0.4
0.2
0.0

Velocity Width Distribution

- 102 HIRES profiles
- $\Delta \mathrm{v}_{90}$: velocity width enclosing 90% of central integrated optical depth
- Median $\Delta \mathrm{v}_{90}=72 \mathrm{~km} \mathrm{~s}^{-1}$

Kinematic Floor: $\Delta \mathrm{v}_{90} \geq 18 \mathrm{~km} \mathrm{~s}^{-1}$

-Threshold circular velocity $\mathrm{v}_{\mathrm{c}}>30 \mathrm{kms}^{-1}$
-Limit on velocity dispersion $\sigma_{v}=6 \mathrm{kms}^{-1}$

- $\mathrm{T}<3700 \mathrm{~K}$

Comparison between Λ CDM simulations (red) and HIRES data (blue) reveals a problem

(a) Pontzen et al. 2008

(b) Tescari et al. 2009

Divide DLA sample with respect to
[C II] $158 \mu \mathrm{~m}$ cooling rates per atom, $l_{\text {c }}$

CII* Absorption provides measure of gas cooling rates in DLAs

$$
\boldsymbol{I}_{\mathbf{c}}=n \Lambda_{[C I I]} \sim \frac{N(\mathrm{CII})}{N(\mathrm{HI})} h v_{21} A_{21}
$$

--Bimodality between "high-cool" and "low-cool" DLAs

lower limits

Pontzen etal (2008) model (red) consistent with kinematics of "low cool" DLAs (blue)

Median
Velocity
$=50 \mathrm{kms}^{-1}$

DLA incidence as function of Δv_{90} for different ranges of DLA halo masses (Pontzen etal '08)

Evolution of halo mass function implies decrease of the circular velocity, v_{c}, with redshift

$$
\frac{d^{2} n}{d X d v_{w}}=\int p\left(v_{w} \mid v_{c}(M)\right)\left(\sigma\left(v_{c}(M)\right)\right)(d n / \mathrm{d} \log M) d \log M
$$

Indirect observational evidence for decline of Δv_{90} with z (Ledoux etal 2006)

Correlation between $[\mathrm{M} / \mathrm{H}]$ and z further suggest $\Delta \mathrm{v}_{90}$ should decline with z

But evidence for evolution of Δv_{90} with z is weak at best

Fundamental Plane

- Two weakly correlated variables, $\Delta \mathrm{v}_{90}$ and z
- But $\Delta \mathrm{v}_{90}$ strongly correlated with [M/H]
-Redshift z strongly correlated with [M/H]
- Analogous to fundamental plane for elliptical galaxies where σ_{v} and μ are uncorrelated, but each are strongly correlated with r_{e}

$[M / H]=-2.54 \pm 0.27+1.04 \pm 0.12 \cdot \log \Delta v_{90}-0.26 \pm 0.04 \cdot z$

Edge-on

Model Predictions

- Kinematic Model (Barnes and Haehnelt 2008)
- Chemical Evolution (Erb 2006)
--Kennicutt-Schmidt Law (with reduced SFR efficiency)
--Tinsley type model with inflow and outflow

Model Predictions: velocity width vs z

Model Predictions: metallicity vs z

Model Predictions: plane parameter vs z

Results of Survey for DLAs with $z>4$

- Robust evidence for linear decrease of $<Z>$ with z for $\mathrm{z}=[1,5]$.
- Large Dispersion in $[\mathrm{M} / \mathrm{H}]\left(\sigma_{[\mathrm{M} / \mathrm{H}]}=0.55\right)$ at all z
- Distribution of $[\mathrm{M} / \mathrm{H}]$ and $[\alpha / \mathrm{Fe}]$ like halo stars
- Metallicity "floor" at $[\mathrm{M} / \mathrm{H}]=-3$

DLA Kinematics

- $\mathrm{v}_{\mathrm{c}}>30 \mathrm{~km} \mathrm{~s}^{-1}$ for halos hosting DLAs
- Simulations reproduce kinematics of "low-cool" DLAs
- Possible detection of fundamental plane in which $[\mathrm{M} / \mathrm{H}]$ is a function of $\Delta \mathrm{v}_{90}$ and z
- Predicts a mass-metallicity relation with a zero-point metallicity that decreases with z
- $\Delta \mathrm{v}_{90}$ may increase with redshift

