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Use DM sheet to get distribution function

12

Renderings of same warm DM simulation data

Adaptive kernel filtered Kaehler et al. 2012 full tet rendering
Mass is spread out ⇒ fragmentation reduced
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Much more intricate web structure...

14

Same simulation data!

rendering points for particles. rendering tetrahedral phase space cells.
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Density information everywhere in space
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A first glimpse: analyzing phase space

17

can probe
fine-grained
phase space

structure.
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From caustics to multistream...

18

first caustic

multi-stream

primordial

works remarkably well to 
understand dynamics of LSS

Use the local number of foldings
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What mass fraction is multi-stream?

19

Numbers increase
with resolution

just as you expect for CDM

or, how much mass is collapsed?

a few% in caustics

approaches power-law?
(cf. also Shandarin et al. 2011)

almost everything,
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So, what volume fraction is multi-stream?

20

AGAIN,
Continues to change with resolution

or, how much volume is LSS?

again..., 
approaches power-law

In particular: 
The volume fraction of voids cannot 

even be determined.

This is CDM : clumps on all 
scales, maybe down to earth 

masses.

Voids, Sheets, Filaments can be 
sensibly defined only for a given 

spatial scale.
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The density distributions

21

(mass weighted)
Voronoi:
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Comparison with Voronoi densities

22

Much of the difference is at 
modest overdensities!

But they occupy
a lot of volume.

mass weighted
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Radial profiles

23



Tom Abel2012

New numerical methods 

24
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Problems of the N-body method

25

Tracing the dark matter sheet 3

dark matter sheet can be reconstructed at all times. Projecting
the sheet onto configuration space gives then a volume filling
density field of the dark matter fluid that we propose to use as
the density field that should be used to solve Poisson’s equa-
tion in future solvers for collisionless fluids. Current N -body
solvers do not evolve the vertices consistently with a density
field construed in the proposed way.

As a first step towards this goal, we analyze the results
of standard cosmological N -body simulations using this new
definition of the dark matter sheet. The plan of the paper
is as follows. First we will explain one and two dimensional
analogues to introduce the relevant concepts. We then describe
the details of our implementation before we apply the method
to analyze cosmological large-scale structure as well as the
phase-space properties of a single galaxy cluster halo.

2 EVOLUTION OF THREE-DIMENSIONAL
SHEETS IN PHASE-SPACE

The distribution function f(x,p) describes the density of a
fluid in phase-space. It evolves via

∂f
∂t

= − p
m

·∇xf −∇xφ ·∇pf, (5)

where φ is the gravitational potential and m is the dark mat-
ter particle mass. Fluid elements get stretched in coordinate
space by advection p

m ·∇xf , and in the momentum coordinates
by the gravitational forces p

m ·∇xf . Note that in a Lagrangian
frame the first term on the right hand side is zero. Further-
more, the second term describes how the fluid is stretched in
momentum space and does not affect the space density of the
fluid parcel. This just states Liouville’s theorem (Gibbs 1902)
that the volume in phase-space is conserved. Hence, any fluid
volume �x�v will remain constant. We are interested here in
the space density of the fluid, the projection of f into coordi-
nate space. i.e. the integral ρ(x) =

�
f(x,v)d3v. The contribu-

tion to the space density of any stream of dark matter is only
affected by the volume it occupies in the space coordinates,
i.e. �x. Consequently, all that is necessary to follow the evo-
lution of the dark matter density is to follow the Lagrangian
evolution of fluid elements. The mass inside a volume element
is conserved and its contribution to the space density of dark
matter is described by the volume it occupies. Conversely, for
a given WIMP model one knows the initial velocity dispersion
at any point in space (e.g. Hogan 2001; Vogelsberger et al.
2008). Therefore, if one knows the spatial part of the phase-
space density one has information about the density in velocity
space. For a given shape of the initial distribution function in
the velocity directions (e.g. a Maxwellian) one has a reliable
measure of the intrinsic velocity density at all times.

It is instructive to first describe a straightforward and well
known one–dimensional case from which a number of lessons
can be learned which apply equally well in higher dimensions.

2.1 The Zel’dovich pancake

The phase-space diagram and the evolved density in a
Zel’dovich plane wave collapse is shown in Figure 1. The ini-
tial sheet at very early times would be coincident with the x-
axis as the initial velocity perturbation is small and the initial
state models a nearly homogeneous Universe. Sampling this
initial state with particles of equal mass gives one a grid of
uniformly placed particles. Their configuration space volume
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]

Figure 1. The one–dimensional plane wave collapse of Zel’dovich
(Zel’Dovich 1970; Binney 2004). The top panel gives the phase-
space diagram showing the velocities of the particles at their loca-
tions. The bottom panel gives the density of the dark matter inside
the stream, one computed with a seven point stencil (red squares),
and the other computed from the volume between two neighboring
points (solid line). Knowing the spatial volume between particles
along one stream is sufficient to obtain accurate density estimates
at and between the points.

is now directly related to their distance in the x–direction.
Figure 1 shows the results of computing their local stream
density from two approaches. In one, labelled “neighbour”, we
take the Vi = xi+1 − xi as the volume between particle i and
i+ 1. One full particle mass is distributed in this volume and
the density at (xi + xi+1)/2 is given by ρneigh = mp/|V |. The
values shown as “squares” in the same figure are computed
including information from points further along the stream,
ρ7pt = 6mp/|xi+3 − xi−3|. It is defined at the particle po-
sition xi. A number of observations can be made. Volumes
defined in this way may be positive or negative depending on
whether particles have the same or opposite ordering that they
had initially. Volume elements may also become 0. The den-
sity involving more points along the stream gives rise to some
smoothing and density extrema are clipped. The central high
configuration space densities are reached for two reasons. The
primordial stream densities along the sheet become larger and
many streams overlap adding their densities. The number of
streams in space is always an odd number at any location in
space. Only at the caustics may one measure even numbers.

The particle locations trace the sheet in phase-space. Any
unstructured space-filling grid that connects adjacent fluid ele-
ments may be used to trace the dark matter sheet as it evolves
in phase-space. In fact, there is significant ambiguity here as
illustrated in Figure 2. The two–dimensional analog shown
there has as a simplex triangles. The smallest possible elements
one may choose to follow would be the Delaunay triangula-
tion of the points. However, these would give two resolution

c� 2011 RAS, MNRAS 000, 1–17

f(x,p, t) =
N�

i=1

δD(x− xi(t)) δD(p− pi(t))

Vlasov-Poisson system

Distribution function

⇒ eq. of motion for N massive particles, not a continuum

Main Problem: two-body effects, can be reduced by force softening

Clumping/
Fragmentation

Scattering

Most problematic for non-CDM simulations!
W

an
g&

W
hi
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7

(cf. Wang&White 2007, Mellott 
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Plane wave collapse I

26

Hahn, Kaehler, Abel 2012, in prep.

Plane wave at shell-crossing

Convergence?
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Plane wave collapse II
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Plane wave long after first shell-crossing

two-body effects
force res ≈ 8x mass res
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Antisymmetrically perturbed pancake I
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Valinia et al. 1997 early stage, shortly after shell-crossing in 2nd dim.
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Antisymmetrically perturbed pancake II
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Valinia et al. 1997 late stage
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55eV warm/hot cosmological run
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no fragmentation visible mass functions problematic,
 halo finding needs some work ...
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So, it’s totally awesome or what?

31

Mixing
need increasingly larger number of elements to trace the surface 

v

x

otherwise bias density towards center 

643

1283

2563

5123

#particles
std.PM

tet PM

power spectra too high 
and convergence 
problems due to halo 
profiles

will need refinement
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• Dark matter occupies 3D sheet in 6D phase space

• Can reconstruct this from existing sims!

• New ways to analyze LSS: 
- collapsed mass and volume not converged
- direct access to fine grained phase space structure
- implications for direct&indirect DM detection -> stay tuned

• Visualization helps to find errors and analyzing in detail the 
information provided by cosmological N-body simulations

• Can use as density field for new N-body codes

• Less two-body effects, but convergence issues still... stay tuned!

32

Summary


