Inferring Genetic Architecture from "Systems Genetics" Studies

Norbert Perrimon Harvard Medical School

Q.1 How do we systematically analyze the function of genes?

Q. 2 How do we assemble gene products into networks?

Drosophila genome: 15,000 protein coding genes

Drosophila cells: 7,500 genes

Forward Genetic Screens to identify pathway components

Specific and Penetrant Phenotypes

<u>Hypothesis:</u> Genes with similar <u>specific</u> mutant phenotypes encode components of the same biochemical pathway.

After 2000: Analyses of signaling networks

Overall Strategy and Approaches

From "Omics" in tissue culture cells

To Biology

Validation by transgenic RNAi

Signaling pathways integration and cross-talk

P157-Gal4 UAS-PTEN UAS-GFP

A decrease in Insulin signaling impairs growth (Demontis and Perrimon, 2009)

Insulin — Foxo Dmyc Growth

Drosophila larval muscle growth: A system to understand how the developmental programs of complex tissues are influenced by genetic and environmental factors

- tremendous cytoplasmic growth
- stereotype pattern
- multinucleated cells
- abundant tissue

Inferring Genetic Architecture from "Systems Genetics" Studies

1.Building high confidence Networks

- . RNAi
- . Mass Spec
- . Transcriptomics

2. Network analyses

- . Protein complexes
- . Genetic interaction signatures "Epistasis-map"
- . Flow
- transcriptome signatures
- phosphorylation signatures

Genome-wide RNAi Screening Platform

Drosophila RNAi in tissue culture cells

Add dsRNA to serum-free medium

(most cell lines do not require transfection)

3-5 days

Partial to complete loss of protein Uniform penetrance

Approaches to describe cellular phenotypes in tissue culture

RTK signaling protein interaction network

MAPK/ERK RNAi screen: assay

- Seed cells in 384-well plates with DRSC RNAi collection (available at http//flyrnai.org)
- 4 day incubation
- Stimulation with insulin, fixation, staining with fluorescentlyconjugated dpERK antibody
- Normalization to total ERK, data analysis and filtering
- dsRNA scored as Z score

Functional RTK/ERK RNAi screen

MAPK Phosphorylation captures both MAPK and AKT regulators because of the S6K feedback loop

Functional RTK/ERK RNAi screen

RNAi as a genetic reagent

 "Off-target" effect (OTE) dissociates Amplicon from Gene, and thus restricts dsRNA as a genetic tool.

Distribution of hits

Kinase & Phosphatase set

- 468 genes

- average number of amplicons per gene: 3

Young Kwon: JAK/STAT KP screen

Bottom-Up Genome-wide RNAi approach to Pathway analyses

Gene expression in cell lines: Solexa sequencing

- 50-55% of the genes are expressed in one cell line
- 85 -90% overlap

Gold Standard in RNAi screens: *Rescuing RNAi-induced phenotypes in D. melanogaster cells by genomic DNA fragments of D. pseudoobscura*

D. melanogaster and D. pseudoobscura diverged about 20 million years ago

More than 90% of *D. melanogaster* genes have an ortholog in *D. pseudoobscura*.

Even when the protein sequences are perfectly conserved, DNA sequences are less conserved due to accumulation of synonymous mutations.

Vectors for rescue of tissue culture and in vivo RNAi phenotypes

Shu Kondo

Rescuing th (DIAP1) dsRNA-induced phenotype

Control fosmid +DW

Control fosmid +luc dsRNA

Control fosmid +th dsRNA

th fosmid +DW

th fosmid +luc dsRNA

th fosmid +th dsRNA

RTK signaling protein interaction network: Mass Spec

Adam Friedman Meghana Kulkarni John Asara (BI) Pengyu Hong (Brandeis) Bonnie Berger (MIT)

Tandem-affinity purification: LC/MS-MS (TAP/MS) of all 50 core pathway components at Baseline, Insulin, and EGF stimulation at 10' and 30' (400 Mass Spec runs)

- . 400ml of culture $1-2 \times 10^9$ S2 tissue culture cells
- . Protein G and Streptavidin binding protein affinity purifications
- . One dimensional LC-MS, reverse phase HPLC before the mass spec
- . Significance Analysis of Interactome (SAINT) algorithm to filter background contaminants (Tyers et al. 2010)

Most canonical pathway interactions are identified by Mass Spec

Filtered PPI network of the MAPK Pathway

. 386 interactions among 249 proteins surrounding the canonical components . 119 scored in the RNAi screens (48%)

RTK conserved components

. different cell lines . different RTKs

RNAi + MS

28 in common 149 total

The Canonical pathway is represented within the 28

Remaining 120 represent cell type and RTK specific regulators

Issue of network redundancy: 50% of the components do not have phenotypes

A Single-cell FRET-based JNK Assay

Chris Bakal

A Single-cell FRET-based JNK Assay

Approaches to describe cellular phenotypes

The Activity Of Local Signaling Networks Regulates Dynamic Changes In Cell Morphology

Rho Local Network

Rac Local Network

Chris Bakal

Scratch Assay in mBG2 Drosophila Cell Line

Experimental Design For A System-level Phenotypic Profiling

A small population of GFP-expressing cells are mixed to non-labeled cells to facilitate the segmentation analysis

Feature Extractions From Images

150 distinct pieces of information

- Basic geometric features (e.g., area, solidity, major axis length)
- Intensity-related features
- Boundary-shape analysis

Feature Examples

Raw Morphological Data Are Not Interpretable

Using Neural Networks to Derive Morphological Signatures

The Genetic "Building Blocks" of Cell Shape

Moesin,

β₂Centaurin

RasGAP*

SET Complex

PHAP I/II

CKIIα*

Paxillin

. Tubulin*

2006

Clustering Predicts Physical Complexes

Inferring Genetic Architecture from "Systems Genetics" Studies

1.Building high confidence Networks

- . RNAi
- . Mass Spec
- . Transcriptomics

2. Network analyses

- . Protein complexes
- . Genetic interaction signatures "Epistasis-map"
- . Flow
- transcriptome signatures
- phosphorylation signatures