Geometry of Epistasis in Developmental Patterning

With Francis Corson, Rockefeller

Discussions with MA Felix, ENS Paris, Paul Francois McGill

Developmental Dynamics

Development (x, t): signaling, ... transcription \Rightarrow black box Phenotypic (geometric) models, old idea: Waddington wooliness Dialectics \Rightarrow

System: Worm vulva (quaint?, pre-omics)
Results:
Intrinsic definition of epistasis (its all a matter of variable choice),
How many parameters needed for (x, t)?
Are they $1: 1$ with experiments?
Numerical predictions

Gastrulation of Xenopus

1.2 mm egg

5 hrs fertilization to Movie0 $4000+$ cells

17hrs @23C Movie

Gastrulation of Xenopus

1.2 mm egg

5 hrs fertilization to Movie0 $4000+$ cells

17hrs @23C Movie

Gene expression delimits territories

(or why parameterize development)

Steiner AB etal Dev. 2006. Stage 10.25 images

But many mutants active during gastrulation scored 0-10 on belly-brain axis (aka DAI) well after gastrulation.

Brivalnou lab

Signaling Pathways are Complex

Wnt's for dummies

June 2010, Roel Nusse
These diagrams display interactions between proteins in Wht signaling and the approximate sites of binding. The partners are hyper-linked to one literature reference in PubMed. From there, one can retrieve more literature.

NB cell cycle frog $\sim 20 \mathrm{~min}$, vs culture cells $12-24$ hrs Frog patterned w/o transcription

Epistasis depends on context

If mutations in \sim energy and $\mathrm{O} \sim$ probability of event, then $\mathrm{O}=\mathrm{cst}{ }^{*} \exp \left[-\mathrm{E}_{1}\left(\right.\right.$ if mut 1) $-\mathrm{E}_{2}$ (if mut 2) $-\mathrm{E}_{1,2}$ (if mut 1\&2)]

If O relates to (x, t) events during development how does one parameterize??

Worm Vulva

Score terminal fates

Klontke etal 2007
Sharma-Kishore etal 1999

EGF and Notch pathways define pattern

EGF: graded inductive signal from anchor cell (AC)
Notch (N): lateral signal, necessary and sufficient for Fate 2

Typical data (Milloz 2008)

$\begin{gathered} \text { Cell } \\ \text { ablated } \end{gathered}$	Time of ablation	Descendants of			\# of animals
		$\frac{\text { P5.p }}{\text { LLTU }}$	${ }_{\text {P6.p }}^{\text {TTTT }}$	P7.p	many

Ablate Anchor Cell in strain N2
WT (for 3 vulva cells)

Embryological stages

Equivalence group: Set of cells able to assume a fate
Competence: ability to respond to signal
Specification (committed): Fate defined even if withdraw signal Determination: Fate unchanged even if supply new signal Differentiation: Changes in morphology, specific gene products.

These concepts \sim math thus
Nature of evidence ??
Formulation of model

Specification \& Determination tied to cell cycle

Specification \& Determination (2)

(+- ligands in sensitized backgrounds)

Wang etal 1999, Ambros 1999
1.Ablate AC(time) removes EGF in WT \& hypomorph record \% induction. 2.EGF hypomorph ($\mathrm{VPC} \Rightarrow 3^{\circ}$) : hs EGF $\leq 1^{\text {st }}$ div. and $\%$ induce 3.N receptor (gf) (VPC $\Rightarrow 2^{\circ}$): hs EGF(time) induce $\% 1^{\circ}$
4.ts N receptor(gf): presumptive $1^{\circ} \Rightarrow 2^{\circ}$ prior to $\mathrm{S}, 3^{\circ} \Rightarrow 2^{\circ}$ until $1^{\text {st }}$ div

Specification \& Determination (3)

Specification: late G1-M gradual (AC ablation EGF \downarrow, ts N) Determination: >~ $1^{\text {st }}$ division, resistant to further signals, gradual ectopic ligands push cells around fate plane

Embryology \Rightarrow Math

1. Equivalence group: Set of cells able to assume a fate
2. Competence: ability to respond to signal
3. Specification (committed): Fate defined even if withdraw signals
4. Determination: Fate unchanged even if supply new signal
5. Differentiation: Changes in morphology, specific gene products.
6. Direct product of phase space with 3 fixed points, (time=cell cycle)
7. Signaling pathway parameterized, tilts landscape
8. Cell in basin of attraction of fixed point (signal=0)
9. Signals ineffective near FP's or limits on signals, times
10. Ignored: FP \Rightarrow other 'dimensions'

Topology of phase plane: 1 VPC no signals

3 fixed points all basins meet

- fixed point (sink),
+ saddle
o source

To be ruled out by experiment

Chose coordinates to place fixed points at standard locations: topological description,
Fit signaling pathways to these coordinates.

Flow with no signals

$$
\begin{aligned}
& \frac{d \vec{r}}{d t}=k\left(\frac{\vec{f}(r)}{\sqrt{1+\vec{f}^{2}(\vec{r})}}-\vec{r}\right)+\text { noise } \\
& \vec{f}(\vec{r})=\vec{f}_{0}(\vec{r})=\vec{c}_{0}+2 \vec{r}+c_{2}\left(-2 x y, y^{2}-x^{2}\right)
\end{aligned}
$$

Choose coordinates to place fixed points on triangle Flow limited to unit disk, small f, time scale of r defined by k

Need some form of saturation when ligands added to $f(r)$ Flow in from infinity

Add morphogens

$$
\begin{aligned}
& \frac{d \vec{r}}{d t}=k\left(\frac{\vec{f}(r)}{\sqrt{1+\vec{f}^{2}(\vec{r})}}-\vec{r}\right) \\
& \vec{f}(\vec{r})=\vec{f}_{0}(\vec{r})+l_{1} \overrightarrow{f_{1}}+l_{2} \vec{f}_{2}
\end{aligned}
$$

$l_{1}=\left\{\gamma^{2}, \gamma, 1, \gamma, \gamma^{2}\right\}=E G F \quad$ anchor cell signal in 5 cells P4p \ldots P8p
$l_{2} \mathrm{~N}$ signal in cell i due to itself (autocrine) and neighbors (paracrine)
2D vectors $f_{1} f_{2}$ are to be fit. Intensity of signaling set by $l_{1} l_{2}$ in $[0,1]$ Ignoring $f_{1,2}(r)$ ie reception of signal depends on cellular state, Linear interpolation between ligand $=0$, max. Nothing more needed! NB EGF-Ras pathway \Rightarrow one param!!

Phase plane (morphogens) $1^{\circ}, 2^{\circ}, 3^{\circ}$ (EGF $->1^{\circ} \mathrm{N}->2^{\circ}$)

EGF=. 5 WT P6
EGF=WT P6

0 ligands $-\vec{c}_{0}$ towards 3°

N~. 3 WT P5/7
$\mathrm{N} \sim .5$ WT P5/7
N~WT P5/7

Cell coupling via lateral signal (Delta)

$$
L_{2}(x, y)=\sigma\left(L_{2, x} x+L_{2, y} y+L_{2,0}\right)
$$

$$
\sigma(u)=\frac{1+\tanh 2 u}{2}
$$

Lateral signal L_{2} from cell k depends on state (x, y) via a vector and offset. Sigmoid keeps it [0,1]
L_{2} decomposed into diffusing fraction $\alpha(<1) \&$ membrane bound Diffusing fraction goes to self and neighbors
$l_{2}(k)=\frac{\alpha}{1+n_{k}} L_{2}(k)+\left(\frac{1-\alpha}{2}+\frac{\alpha}{1+n_{k-1}}\right) L_{2}(k-1)+\left(\frac{1-\alpha}{2}+\frac{\alpha}{1+n_{k+1}}\right) L_{2}(k+1)$
$l_{2}=\mathrm{N}$ signal in cell $\mathrm{k}=$ autocrine + paracrine from neighbors
$\left(\vec{f}(\vec{r})=\vec{f}_{0}(\vec{r})+l_{1} \vec{f}_{1}+l_{2} \vec{f}_{2} \quad, \mathrm{n}_{\mathrm{k}}=\right.$ \#neighbors cell k$)$

Parameter count $=14 \Rightarrow 10$

2:1 time scale, k , nonlinearity base flow $\mathrm{c}_{2} \Rightarrow 1$
3:2 EGF vector (points to 1°) $+\exp$ decay of signal from AC
2:1 N vector (points to 2°)
4:2 Lateral signal as fn of $(x, y)(\perp 2-1$,width $\ll 1)+$ diffusing ratio
3 : Initial condition (x, y) in phase plane + noise
(+ 1 param each non WT allele)

Ignoring N l--| EGF ie reception of signal depends on cell state.. BUT assuming bistability between 1° and 2° which suffices to fit

5 cells (AC EGF symmetric) $r(t) 10$ dimensions (6 dims with sym)

Visualizing flows in 6 dimensions with 10 params

0 ligand phase plane WT basins of 3 fates $1^{\circ} 2^{\circ} 3^{\circ}$ trajectories of P6, P5, P4 + noise Notch vector
EGF vector
secretion of lateral signal

Fraction of $1^{\circ} 2^{\circ} 3^{\circ}$ fated cells(time)
$\mathrm{x} \times$ ablation times

- Secreted lateral signal
------ N signaling (autocrine P6)
- cross 3-2, 3-1 boundaries

..and as a movie

..and as a movie

What do we fit

Data $=\%$ fates for cells P6p, P7p, P8p,
(NB partially penetrant phenotypes most informative \Rightarrow boundaries)
Fitting conditions...

WT, single copy EGF, N-receptor; EGFR mosaics
Anchor cell ablation (time)
EGF over expression from AC, global (lin-15)
(ignore fluor pathway markers (time) slowly varying over time window)

For selected EGF, N hypo/hypermorphs fit single mutants predict double Predict isolated cells
Predict matrix of all single condition experiments used in fit....
(Fitting parameters to (data - model) ${ }^{\wedge} 2$: Levenberg-Marquardt ie simple)

Anchor cell ablations \neq EGF hypomorph

(both fits reduce EGF: ablation fixes autocrine, mobile Delta)

Ablation at time P6p induction of
Delta is half max. Autocrine pushes
P6p to $2^{\circ}, \Rightarrow$ fit single cell. Most of
Delta is mobile.
32223 19\%, $3333316 \%, 3323314 \%$, 3212314%

Weak EGF signal from AC makes P6p $->1^{\circ}$ late, less Delta.
33133 34\%, 33333 33\%, 32123 14\%..

Figs for comparable induction (ie $1^{\circ}+2^{\circ}$)

Predictions (1) Single cell and autocrine signals

Isolated VPC chose EGF level to get max induction of 2°. Requires all secreted Delta -> isolated cell. Autocrine signaling fit by ablations.

Isolated VPC getting $1 / 3$ secreted Delta can not make 2°

Temporally delayed specification in isolated cells??

Predictions (2)

Fit EGF (\uparrow AC Hoyos 2011) predict AC ablations(time)

Fit EGF \uparrow to 3/2, 2/1, 1, 2/1, 3/2 predict fates(ablation time) e.g., $\max 2^{\circ}$

Sample parameter space and record fates of VPC

32223 53\%, 32323 8\%, 321237% 322334%.... actual fates

$\mathrm{WT} \times \mathrm{WT}=$ phenotype

(Epistasis from geometry)

Fit 'half' dose EGF,

cross has phenotype

'half' dose N as WT, Bayesian fit \Rightarrow marginal

Robust to parameter variation via MC

Epistasis from linear dynamics in fate plane (Specification of P5/7 by EGF and N (from P6))

$$
\frac{d x}{d t}=x+\gamma \quad \frac{d y}{d t}=y+l_{2}
$$

0 Notch (WT EGF) cross 0 direct EGF (WT N from P6) \Rightarrow P5/7 -> 2°
P5/7 trajectory in cross is vector sum of two alleles, boundary in fate plane -> epistatis

Cross multiple EGF-Ras-MAPK mutations (epistasis from geometry)

lip-1 phosphatase - I EGF (N target, part of N I-I EGF), assume (lf) marginal, lin15 (adds uniform EGF, sensitized bckgnd for N signaling) data:Predict X

Mutant	$\% 1^{\circ}$ fate				
	P4.p	P5.p	P6.p	P7.p	P8.p
lip-1(lf)	0 ± 0	3 ± 4	99 ± 2	3 ± 4	0 ± 0
	0	0	100	0	0
lin-15(rf)	87 ± 8	9 ± 6	98 ± 2	10 ± 6	87 ± 9
	71	0	100	4	79
lin-15(rf);lip-1(lf)	93 ± 5	25 ± 16	99 ± 1	25 ± 16	93 ± 5
	60	40	100	30	87
let-60(gf)	2 ± 7	6 ± 5	97 ± 3	6 ± 5	2 ± 5
	6	0	100	0	3
let-60(gf);lip-1(lf)	40 ± 20	20 ± 14	96 ± 5	20 ± 13	40 ± 20
	45	53	100	45	62

But a model with no pathway interaction can reproduce phenotype of double mutant hence
Can not conclude from genetics that N ->down regulation of MAPK in P5/7p.

Extrinsic vs Intrinsic Noise: Correl in fates of P5/7

This quantifies extrinsic var. induced in P5/7 by variable lateral signal from P6 vs intrinsic variation in P5 \& P7 due to AC and internal dynamics

EGF(rf)						Exp.
33333	47	40				
33133	31	37	33133	73	$\mathbf{- 3 - 3 -}$	77
32123	8	7	32123	3	$\mathbf{- 2 - 2 -}$	2
32133	5	7	32133	11	$\mathbf{- 2 - 3}$	11
33123	5	6	$\mathbf{3 3 1 2 3}$	10	$\mathbf{- 3 - 2 -}$	9

Uncorrel model fates: 212/213/312: 2/8/8\%

Uncorrel model:
2-2/2-3/3-2: 1.5/10.5/10.5\%

Adjust EGF gene dosage to get same average 2° as experiments in red (Felix) EGF(rf) gives greatest correl, Notch(gf) least correl

Extrinsic-Intrinsic noise (2)

AC ablations from prev. slide

Fit data for Prob $\left(1^{\circ}, 2^{\circ}, 3^{\circ}\right)$ in single VPC, but can predict correlations vs exper $3222319 \%, 3333316 \%, 3323314 \%, 3212314 \%$
$-222-23 \%,-333-18 \%,-323-10 \%,-212-19 \% \ldots-213-2 \%$ Milloz 2009 ($20+$ animals) ie symmetric configs >> asym
(picking ablation time to get same \%P6 induction)

Remaining parameter degeneracies

Two constraints on the 5 parameters $\gamma, 1_{1} \wedge$ (hypo, hyper), $\mathrm{Im}_{1,2} \mid$ ie need some absolute scale of EGF under/over expression in units of WT, ie what is the band of EGF levels that yields WT pattern.
f_{o} plays against r_{o} ie $c s t$ force vs initial position, no obvious experiment, coordinate choice.

> A failure
> EGF hypomorph with P6p 50/50\% $1 \circ 3^{\circ} \times \mathrm{N}$ receptor (rf but WT) $\Rightarrow \mathrm{P} 6 \mathrm{p} \mathrm{34/66} \mathrm{\%} 1^{\circ} / 3^{\circ}$

Prior linear model worked for this \times

Prior Models

2 most recent ODE models:

- Model signaling only, not multistable, define regions EGF-N space \Rightarrow fates
- Select model by volume in parameter space,
- Do not fit or predict partial penetrance, deterministic models
- No dynamics fit

1. Giurumescu..Sternberg 2009, 2 variables/cell (EGF, N), 9 dim'less params, vol. in p-space computed over range $10^{\wedge} 5 \Rightarrow 500 / 4^{6}$ fate assignments allowed
2. Hoyos..Felix 2011, 10 variables/cell, ~ 40 params, sampled $\sim 100 \mathrm{x}$ range

Summary features of Geometric models

Few master variables control many slaves, or fast variables follow slow ($\sim 1 /$ signaling pathway, exp. tests of dimension)

Signaling and specification one dynamical system

Cell fates \sim fixed points, clearest when terminal fates (intermediate cell types in hematopoiesis stable??)

Ligands change topology of flow (saddles and fixed points)

Mutants that land near basin boundaries take longer to specify?? (time \sim degree of penetrance??, VPC daughters inherit maternal state?)

Models not literal representation of competence window, differentiation

Lessons

Signaling more enmeshed in cell biology than transcription, thus phenotypic model more useful.

Abundant evidence that relative strength of pathways changes, WT pattern fixed. Thus no reason to measure all the molecular bricolage

Outcomes, times for specification etc highly variable, ignored in deterministic ODE models. extr/intr noise in cell lineage tree in worm??

Developed interpolation scheme, null model, like linear correl, but illuminates epistasis: gene interacions

Crude predictions for many properties (2 bit theory)
'Geometric' model not obvious, e.g.,
vulva ~ 3 way culture cell choice
(eg C2C12 hi TGF β proliferate, lo TGF β muscle, hi BMP bone)
short \Rightarrow long germ band insects HOX patterns (Francois EDS)
DV patterning neural tube.
fly leg, AP, DV, PD via boundary model.

The end

