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Cis-regulatory modules (enhancers)
2

Even-skipped (“eve”) gene 

expressed in seven stripes in the 

trunk region

Different stripes driven by different cis-

regulatory sequences
“Eve stripe 2”



Cis-regulatory modules
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Regulatory sequence 
associated with eve Stripe 2

From Steve Small, NYU

Reporter gene

Reporter gene expression



Cis-regulatory modules
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Regulatory sequence 
associated with eve Stripe 2

Kr Kr KrGt Gt Gt “Eve Stripe 2”

Activators

Repressors

Hb bcdbcdbcdbcdbcd
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Drosophila Genome Surveyor
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Genome Browser tracks for motifs for ~ 300 TFs. (HMM-based.)

In each of 12 Drosophila genomes, as well as multi-species averages

Can combine tracks for any subset of motifs (for CRM discovery)
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CRM Function

 How do we go from sequence to expression?
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ACGGATCGACA….CGACGACGATCG

PLoS Biology 2010

PLoS Comp Bio 2010



Well, we’ll use more than just the sequence

Segal et al.  Nature 451, 535-540(31 January 2008)doi:10.1038/nature06496

ACGGATCGACA….CGACGACGATCG

(eve stripe 2 CRM)

Assume that TF concentration profile 

known

PLoS Biology 2010

PLoS Comp Bio 2010



The A/P patterning regulatory network

Predicted expr

Real expr

Segal et al.  Nature 451, 535-540(31 January 2008)doi:10.1038/nature06496

Assume that TF concentration profile 

known

ACGGATCGACA….CGACGACGATCG

(eve stripe 2 CRM)



Statistical Thermodynamics-based models

 Shea & Ackers (1985). “The OR control system of 

bacteriophage lambda. A physical-chemical model for 

gene regulation.” J Mol Biol 181: 211–230.

 Buchler NE, Gerland U, Hwa T (2003). “On schemes 

of combinatorial transcription logic”. Proc Natl Acad

Sci U S A 100: 5136–5141.

 Gertz J, Siggia ED, Cohen BA (2009). “Analysis of 

combinatorial cis-regulation in synthetic and genomic 

promoters”. Nature 457: 215–218.

 This is what our framework will be based on.



Statistical Thermodynamics-based models

 Other quantitative models:

 Janssens H, Hou S, Jaeger J, Kim AR, Myasnikova E, 

et al. (2006). Nat Genet 38: 1159–1165.

 Zinzen RP, Papatsenko D (2007). PLoS Comput Biol

3: e84.

 A general purpose software implementation missing.



Model based on equilibrium thermodynamics
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CRM with 3 binding sites. Two 

activator sites and one repressor 

site.

23 = 8 possible configurations of 

bound/unbound factors.

Statistical weight of a bound site 

(q) given by sequence and TF 

concentration.

Statistical weight of a 

configuration comes from product 

over bound sites.

Statistical weight = relative 

probability of a configuration

(Boltzmann)



Modeling Gene Expression
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BTM may be bound (at promoter)

Gene expression  probability of bound BTM.

or not Shea &Ackers, 1985

Gertz et al, 2009.



TF effect on gene expression
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Each bound trans. factor interacts independently with BTM. 

Activators have stabilizing effect. Repressors destabilize.

> 1

< 1



Implementation

 Two free parameters per TF: 

 one for TF-DNA interaction

 one for TF’s activation or repression strength

 Given these parameters, relative TF concentrations 

and any sequence, compute the predicted 

expression level (fractional occupancy of BTM) in 

time proportional to length of sequence. Dynamic 

programming.

 Note that predicted expression levels are relative.



Implementation

 Given any set of enhancer sequences and their 

output expression profiles, learn parameter values 

such that model output best fits data.

 ~40-50 CRMs that drive A/P pattern

 “Pattern” here is the expression in each of ~100 

“bins” along the A/P axis

 ~6-10 TFs that are known to be “relevant”



Issues: Objective function

 What does it mean for model output to “fit” data? 

That is, what is the objective function?

 Sum of squared errors

 Average Correlation coefficient

 Each has problems



Issues: Objective function

 What does it mean for model output to “fit” data? 

That is, what is the objective function?

 Objective function is really a subjective choice. 

 Public implementation alternates between Average 

CC and RMSE.

 New implementation uses “Pattern Generating 

Potential” or PGP (from Kazemian et al 2010). We 

“engineered” an objective function that we were 

least unhappy about.



Issues: Objective function



Issues: Simultaneous fit to all CRMs

 Important that we fit the parameters to many CRMs 

simultaneously. 

 Generally easy to fit to a single CRM or a handful.

 Therefore need an objective function that can 

 not only tell when one prediction is a better fit than 

another prediction for the same CRM, 

 But also compare the fit on one CRM to the fit on 

another CRM.



Issues: Simultaneous fit to all CRMs

 Important that we fit the parameters to many CRMs 

simultaneously. 

 In practice, there will be some (or many) CRMs for 

which we are missing key TFs, or CRMs that are 

“weird”. 

 But a simultaneous fit will try to find parameters 

that produce best fits overall. Perhaps we’d like to 

allow the optimization to “pass” on some (or many) 

CRMs of its choice. We do that now.



Issues: Optimization algorithm

 Tried a few things; public implementation uses a 

combination of a gradient descent method and a 

simplex algorithm.

 Also tried an “evolutionary strategy”

 On real data, similar results; on realistic but 

simulated data, similar results.

 Also, a fairly exhaustive search of parameter space 

done before choosing 1000 best “starting points”



Visuals of model fits (some good ones)



Mechanistic inferences?

 Test if particular mechanistic aspects improve the fit 

of model to data. For example, the model I 

described vs model that includes short range 

repression.



Comparing model fits

 Compare the optimized objective function under 

each of the two models

 Sum of squared errors

 Average correlation coefficient 

 PGP

 Same, but under cross validation, if models differ in 

complexity

 Statistical significance of the difference?



Testing mechanistic aspects

 Effect of cooperative DNA binding by pairs of TFs

Cooperativity in DNA-binding 

(between adjacent bound trans. 

factors) contributes a term  to 

the weight of a configuration



Testing mechanistic aspects

 Effect of cooperative DNA binding by pairs of TFs

BCD and KNI self 

cooperativity helps



Testing mechanistic aspects

 Effect of cooperative DNA binding by pairs of TFs



Back to model comparison

 Typically, both models do similarly on many CRMs, 

one does better on some, the other does better on 

some others. Comparing overall quality of fit often 

misses the mark.

 Compare fits on each CRM separately, quantify as 

a p-value, see if a significant number of CRMs have 

a significant improvement under one model vs

another.



Testing mechanistic aspects

 Effect of synergistic activation

multiple bound activators simultaneously contacting the 

basal transcriptional machinery

With two bound activators, there are two possibilities:

1) Both interact simultaneously with the BTM: leads to “synergistic” activation

2) Only one interacts with the BTM at a time: no synergy



Testing mechanistic aspects

 Effect of synergistic activation

multiple bound activators simultaneously contacting the 

basal transcriptional machinery



Testing mechanistic aspects

 Effect of synergistic activation

multiple bound activators simultaneously contacting the 

basal transcriptional machinery



Testing mechanistic aspects

 Effect of synergistic activation

multiple bound activators simultaneously contacting the 

basal transcriptional machinery



Testing mechanistic aspects

 Effect of short range repression

 For KR, HB: short range repression model as effective as 

the baseline model

Repressor will work without direct 

interaction with BTM

If bound, creates a new configuration 

where its locality is rendered 

“inaccessible” to other factors



Issue: missing TFs

 An effect that is really due to a missing TF may be 

incorrectly assigned due to a mechanistic aspect in 

a model. 

 So we need to be most diligent about including the 

relevant TFs.



<slides deleted>



Issue: Gene locus modeling

 Trained model can be used to predict expression 

pattern driven by any CRM sequence

 Ideally, would like to predict gene expression 

pattern from entire locus

 In this scenario, we don’t know the CRMs in the locus



Issue: Gene locus modeling

 Given the 16 Kbp eve locus, can we predict its 

pattern correctly ? 

 Predicting on the entire 16 Kbp locus as one 

sequence will not work.



<slides deleted>
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