To Send or Receive but not Both:

The role of cis-interactions between Notch and Delta

Computational Morphodynamics, KITP 2009

David Sprinzak

Elowitz Lab, California Institute of Technology

Fine Grained Developmental Pattern Formation

Inner ear development (chick)

Goodyear and Richardson, J. Neurosci 1997

Wing Vein Patterning (Drosophila)

Lai et al, Development 2005

THE THEORY OF THE GENE

 $\mathbf{B}\mathbf{Y}$

THOMAS HUNT MORGAN

Professor of Biology, California Institute of Technology formerly Professor of Experimental Zoölogy in Columbia University

Fig. 44.

Notch-wing, a dominant sex-linked, recessive lethal of Drosophila melanogaster.

How do the molecular properties of the Notch-Delta signaling system affect developmental patterning?

Approach: combine quantitative time lapse microscopy and mathematical modeling

Quantitative time laps microscopy

Mathematical modeling

Use synthetic approach:

- Synthetic constructs (Notch-Gal4)
- Study dynamics in mammalian cell culture system

Delta trans-activates Notch

Delta trans-activates Notch

Delta Trans-activates Notch

Delta cis-inhibits Notch

Delta cis-inhibits Notch

Delta cis-inhibits Notch

Notch and Delta interact in cis and in trans

(Diagram is only schematic - cis and trans interaction occur in the same Notch domain)

How do the Notch pathway integrates these two inputs?

Why do you need such a mechanism?

Platform for analyzing Notch response to cis and trans Delta

System for analyzing Notch response to cis and trans Delta

Base cell line: CHO-K1

Not shown: TetR, CMV-H2B-Cerulean

rDll1 (from Gerry Weinmaster) 12xCSL (from Urban Lendahl) hN1 (from Jon Aster)

Notch response to trans-activation

Notch response to trans-activation

What is the cooperativity of Notch response to trans-Delta?

From modeling of Lateral Inhibition expect >2

Notch response to trans-activation is graded

Measuring Notch response to cis and trans Delta

Notch activity in response to cis-Delta

Red – Delta Green – Notch response

Cis-Delta exhibits sharp response

And even sharper in single cells...

Effective cooperativity $\approx \tau_{Delta\ decay} / \tau_{rise} \approx 12$

Response of Notch signaling to both cis and trans Delta

What have we got?

- Graded response to trans-Delta
- Sharp response to cis-Delta
- Threshold for cis-Delta independent of trans-Delta

Mathematical model

Trans-activation reaction:

Notch ICD

$$N + D_{trans} \rightleftharpoons [ND_{trans}] \rightarrow S$$

Cis-inhibition (mutual inactivation) reaction:

$$N + D_{cis} \rightleftharpoons [ND_{cis}] \rightarrow \phi$$

N and D_{cis} are also produced and degraded at constant rate

Mathematical model

$$\begin{split} \frac{dN}{dt} &= \beta_N - \gamma N - \frac{ND_{cis}}{k_C} - \frac{ND_{trans}}{k_t} \\ \frac{dD_{cis}}{dt} &= \beta_D - \gamma D_{cis} - \frac{ND_{cis}}{k_C} \\ \frac{dS}{dt} &= \frac{ND_{trans}}{k_t} - \gamma_S S \end{split}$$

Model captures main experimental observations

Mutual inactivation of Notch and Delta leads to an ultrasensitive response

A signaling switch 'Sender' or a 'receiver' but not both

An inherent property of the Notch-Delta signaling Without any transcriptional feedback!

Signaling bias in two neighboring cells

Mutual inactivation amplifies differences between cells

Implications for Pattern formation: Sharp boundary in the wing vein

Notch (green)

Delta (red)

Huppert et al. (1997)

de Celis et al. (1997)

Sharp boundary in the wing vein

Sharp boundary in the wing vein

Model explains gene dosage phenotypes

de Celis and Bray (2000)

Model explains gene dosage phenotypes

Lateral Inhibition with Mutual Inactivation mechanism circumvent the need for cooperativity

Requires n>2

Work with n=1!

And generates a new spectrum of patterns

Summary

- Mutual inactivation of Notch and Delta results in an ultrasensitive signaing switch: A cell is either a 'sender' or 'reciever'
- This intrinsic property of the Notch pathway amplifies differences between neighboring cells without additional feedback.
- Major implication in patterning processes

Mutual inactivation mechanism?

Interaction between morphology and signaling

Role of Disorder

Confluent MDCK cells

Examples of active interaction between signaling and morphology

Response of Notch signaling to both cis and trans Delta

hN1 vs hN1G4^{esn}

Model explains qualitative difference between measurements

Acknowledgments

Jordi Garcia-Ojalvo

Special thanks

Gerry Weinmaster and the Weinmaster lab

Irv Bernstein
Jon Aster

Plate bound Delta calibration

Catalytic model

Alternative models for boundary formation

Implications in Pattern formation 1: Sharp boundary in the wing vein

Huppert et al. 1997

Quantitative time lapse microscopy using fluorescent protein reporters

Fully automated setup:

Allows taking time lapse microscopy movies over extended times (several days)

Automated segmentation and tracking

Developed automated image analysis routine:

- ➤ Identify (segments) single nuclei.
- ➤ Track nuclei through time lapse movie.
- ➤ Identify cell division and keeps track of lineage relations.

Quantitative analysis of Notch-Delta Signaling

Conclusions:

- We can track the dynamics of activation.
- We measure a time delay of a few hours between contact and transcriptional response.