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Transcription regulatory networks:
Some imagination

Ultimate goal of reconstructing transcription regulatory networks:
• A physical model of the binding specificity of each transcription factor.

• Determined binding affinities genome-wide for each TF.

• Quantification of TF activities in given conditions of interest (expression, nuclear 
localization, post-translational modification, co-factor presence, etcetera.)

• A physical model that predicts genome-wide TF binding patterns in terms of 
sequence and TF concentrations. 

• A physical model of the cis-regulatory logic, i.e. a quantitative mapping of TF 
binding configuration  to quantitative effects on transcription of targets, and on 
local (and distal?) chromatin modifications.

• A dynamical model that integrates all this into a model of expression dynamics. 



Transcription regulatory networks:
Some reality

• Mammalian cells have wildly varying morphology, and behavior, but they all share the 

same DNA.

• We imagine that global gene expression patterns are key determinants of cellular state (to 

what extent there are clearly discrete states is still unclear).

• We imagine that gene expression state is controlled by the activities of TFs which are 

binding to sequence-specific binding of TFs to sites in the DNA (in a manner that may 

depend on and effect local chromatin state). 

• In mammals there are about 2000 TFs that potentially play a role in controlling cell identity.

• For the large majority of cellular states and differentiation pathways we know next to 

nothing about which regulators are key in controlling expression and chromatin dynamics.

• We cannot do extensive genetic screens for every system. 



Accelerating regulatory network 
reconstruction

Develop a computational frame-work that:
• Starts from genome-wide measurements of expression or chromatin state dynamics 
(micro-arrays, RNA-seq, ChIP-seq) for a system of study. 

• Predicts the transcription regulators that play a key role in the process under study
(developmental time course, response to perturbations, disease versus healthy tissue).

• Predicts how the regulators change activity (up-regulation, down-regulation, transient 
changes).

• Predicts the target gene sets of the key regulators.

• Predicts the cis-regulatory elements on the genome through which the regulators act.   

Provide automated analysis of high-throughput data 
that tells where to invest detailed experimental effort.



Levels of gene expression control in 
eukaryotes

Regulation of transcription initiation is a key event in regulation of gene expression.
Question: Where is transcription initiated genome wide? 

Our focus

Ignore

Degradation 

control………



Deep sequencing of 5’ ends of mRNAs:
deepCAGE technology

Cap analysis gene expression for  high-throughput 
analysis of transcriptional  starting point and
identification of promoter usage.
Shiraki et el. PNAS 23 15776-81 (2003)

Tag-based approaches for transcriptome research
and genome annotation
Harbers M, Carninci P.
Nat Methods 2 495-502 (2005)

Tagging mammalian transcriptome complexity
P. Carninci
Trends Genet 22 501-10 (2006)

454/Solexa/Helicos sequencing.
Mapping to the genome.



Constructing `promoters’

Triplicate 
time course

Known
transcripts

Tag counts at
each position

Transcription Start Cluster: 
Cluster of neighboring TSSs that are co-expressed (within measurement noise).



Noise-model for CAGE expression data

Biological replicates: 
log-tag count in one replicate versus another.

The noise can be modeled as multiplicative noise, followed by Poisson sampling.
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DeepCAGE data analysis:
constructing human and mouse `promoteromes’

Statistic Human Mouse

Number of samples 56 66

Number of TSSs in TSCs 860’823 608’474

Number of TSCs 74’273 77’286

Basic promoterome stats:

There appear to be two 
regimes in the number of 
TSSs per TSCs. 



CpG and non-CpG promoters

Promoters can be separated into two classes: 
high CG/CpG and low CG/CpG. 
CpG promoters are wide with many TSSs.
Non-CpG promoters are narrow with few TSSs.

These results confirm previous observations 
based on the FANTOM3 mouse data:

High CG/CpG

Low CG/CpG



Conservation statistics around TSCs:
Proximal promoters

PhastCons: probabilistically classifies 
positions as  conserved/not-
conserved based on vertebrate 
genome alignments.

• There is a narrow peak of conservation around TSCs.
• This indicates that conserved DNA signals around TSS are concentrated in a small region.
• We choose (-500,+500) as a conservative estimate of the proximal promoter.



Prediction of 

transcription factor binding sites 

• The basic hypothesis is that transcription regulatory patterns are ultimately driven by
regulatory sites in the DNA that are recognized by transcription factors.

• The next step in analyzing regulation of gene expression is thus to identify regulatory
sites genome-wide.

• For the moment we will focus on proximal promoter regions only. 
Main reason: we have no reliable way of identifying relevant enhancers genome-wide.  We 
hope sites for the relevant factors are often at the promoters as well.



IRF7 E2F REST GATA2/4

Predicting TFBSs in all proximal promoters
Input:
• A curated collection of 189 mammalian regulatory motifs (weight matrices) 

representing 340 human TFs.

All proximal promoter regions (-500,+500) with respect to each TSS.
• Multiple alignments with orthologous regions from 6 other mammals. 

• The phylogenetic tree relating the species:

CATTCGCAGTGGCAAGGGACTGCCCTGGTCCCTGTGGAGC—GTCCCATTCGGTGACTTCCCACCAGCCCTTCCCCAGCGCCTCTGGAGGTCCAGACTGTCAGGTTGGAGCCTGGG

CATTCACAGTGGCAAGGGTCCGCCCTGGTCCCTGTGGAGG--GTCCCAGTCGGTGACTTCCCGCCAGCCCTTCCCCAGTGCCTCTGGAGGTC--GACTGTC-GGTTGGAGCCTGG

GAGGGGCGG---CTCGGGAGG---------CCTGCGGACC--GGGCGAG-CGGGGGCG-GCG----GGGCGGCGGGGGAGCCGGGCGGGGGCC------TGCGGTCGG-GCCTGG

GATTGGCCGCGGCCAAGGACCCC-----TCCCTGGGGAGC--GTCCGGGTCGGAGACT-CCCACTTGCCCTTCTCCAGCACCTCGTGAAGTCCGGACTGTACGGTTTG-GACTCG

TATCTACAACAGCAAG-GA--------GTC--TG-GAAGCAAGTCCAAGT-GATGGA-TACAGCCATCACTTACC--GGGCCTCTGCTGGTCGTGACTT----------------

Human

Rhesus macaque

Mouse

Cow

Dog



MotEvo Algorithm

Scer AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--GTTGATATTC-CTTTGATATCG-----ACGACTA

Spar AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--ATTGATATTC-CTTTAGCTTTT----AAAGACTA

Smik GAAAAACGAAAAATTCATG-GAAAAGAGTCAACCGTC-GAAACATACATAA--ACCGATATTT-CTTTAGCTTTCGACAAAAATCTG

Sbay GAAAAATAAAAAGTGATTG-GAAAAGAGTCAGATCTCCAAAACATACATAATAACAGGTTTTTACATTAGCTTTT----GAAAACTA
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• MotEvo considers all possible ways into which the multiple alignment can be partitioned into:

• Background columns: Evolve neutrally.

• Binding sites for one of the motifs: Constrained by the WM.

• Unknown functional elements: Unknown constraints. 

• Forward/backward algorithm to sum over possible configurations.

•

• Posterior probability for site occurrence at each position and each motif.



TFs have distinct positional preferences 
with respect to TSS

The positional preferences of each motif are incorporated in the site predictions
(the positional profile is iteratively estimated and used as a prior).

NF-Y
TBP

ELK1/4 YY1



Example: Predicted TFBSs in the proximal promoter of the SNAI3 TF.

http://www.swissregulon.unibas.ch

Summarizing the TFBS predictions:
For each promoter p and motif m we sum the posteriors 
of the predicted sites to obtain a matrix of site-counts: pmN

Genome-wide annotation of regulatory sites
in proximal promoters



Polymorphisms in sites

HNF4A – hepatochte nuclear 
factor 4, alpha

SP1

18% G, 82% A

96% C, 4% T

z=8.4

z=5.6
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 mutation (same position)

 mutation (random within a site)

Polymorphisms in sites

 

1.25*10
-3

2.36*10
-3

SNP density is lower at sites 
compared to flanking positions.

SNPs are biased to conserve binding site affinity



Leveraging the genome-wide 
binding site predictions 

• We have the positions of transcription initiation clusters genome-wide.
• We have extracted the proximal promoters around each promoter.
• We have predicted regulatory sites for a large number of motifs (TFs):

• We will use the predictions to analyze genome-wide dynamics of expression 
and chromatin state.

• We first focus on analyzing expression dynamics.

pmN



Quantifying expression data

Promoter 1

Promoter 2

Promoter 3

Micro-array probes

Input: RNA-seq read densities

conditions s conditions s conditions s

pse

Expression profiles

Promoter 1 Promoter 2 Promoter 3



Motif Activity Response Analysis
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e N A

Expression of promoter p 
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Significance of motif m:

Linear model: Expression is weighted sum of the activities of all TFs that have binding sites 
in the promoter. 
Review: Bussemaker et al. Annu Rev Biophys Biomol Struct 2007



Human tissue atlas and 
cancer cell expression data

79 human tissues, Affymetrix micro-array

60 cancer cell lines, same Affymetrix micro-array



In which samples is a given motif 
most active? 

A known liver-specific factor indeed shows highest activity in liver tissues.
Other tissues in which HNF1a is known to be active are also recovered.



Motif activities 
associated with disease



A regulatory motif associated 
with cell proliferation



FANTOM4



96 hours

Cells stop proliferating 

and become adherent

• Expression was obtained (in triplicate) at 6 time points:
1. Before PMA treatment.
2. After 1 hour of PMA treatment.
3. After 4 hours of PMA treatment.
4. After 12 hours of PMA treatment.
5. After 24 hours of PMA treatment.
6. After 96 hours (4 days) of PMA treatment.

• Genome wide expression was measured using both DeepCAGE and micro-arrays.
• DeepCAGE samples had  between 1 and 2 million mapped TSSs each.

THP-1 cells differentiating into 
a macrophage like state



Motif Activities

E2F1-5 NF-Y

MYB FOS/JUN

CAGE microarray

CAGE microarray

CAGE microarray

CAGE microarray

Inferred activity profiles of the top 4 motifs

Different colors correspond to the three biological replicates.

• Activity profiles are significantly more reproducible then the expression data of 
individual genes.
• This is because activity is inferred from the global behavior of all promoters.



Core motif activity profile clusters

• Activity of each motif at each time point is characterized by Gaussian with given mean and variance.
• For any set of motifs we can calculate the probability of the `data’ assuming all activity profiles are the same.



Prediction of regulated target promoters

• For each motif go through list of all promoters with predicted TFBSs
• Investigate the correlation between expression profile of the promoter and 
activity profile of the motif. 

0pmN

The z-value quantifies the strength of the correlation.

Activity profile NF-Y

Expression profile SREBF2



Validating predicted targets
with siRNA TF knock down.

• Knock down TF associated with the motif using siRNA.
• Use micro-array (triplicate) to determine average fold-change siRNA vs. mock transfection.

• Predicted targets are down-regulated relative to non-target genes.
• Higher confidence targets respond more strongly to siRNA knock-down.

MYB

SNAI3

RUNX1

EGR1



Core regulatory network

Edge confirmed

by literature

Edge confirmed

by ChIP-chip

Edge confirmed

by siRNA

GO-term enriched

among predicted

targets

Size node

=

Z-value 

activity

profile

Color node

=

Membership

activity

cluster

Of all 199 predicted edges (z>1.5) between the 30 core motifs, 55 had independent experimental support.



Conclusions: Master regulators

Recurrent network of mutually regulating TFs Regulatory cascade with master

Master

TF

TF TF TF

TF TF

Terminal target genes

TFTF TFTF

• No pre-defined direction of the regulatory flow and many feed-backs.
• No single `master’ switch that controls the entire process.
• High connectivity between the regulators.



TFs without known motifs

• A large fraction of genes that change expression at 1 hour are TFs.
• Predicted regulators of these early response TFs are: SRF, FOSL2, TBP
• All these are known PMA-responsive genes. 

Description Count Regulating core motifs

Expressed TFs 610 455 without known motif

Statically expressed 408 none

Down-regulated 34 OCT4, GATA4, NF-Y

Up-regulated 64 SNAI, TBP

Transiently changing 110 SRF

A large fraction of genes that change 
expression at 1 hour are TFs.



• Many TFs mutually regulating each other create stable expression states.
• Move between attractors involves transiently active TFs (e.g. SRF) that target 
mainly other TFs. 
• The state space is high-dimensional: there are many different ways to move 
between different stable states. 
• Many places in state space are likely `no-go’ areas: cell death.

gene expression

state space

Stable expression state

Basin boundary

Flow of the dynamics

Conclusions:
Stable cellular states as dynamic attractors



SwissRegulon and MARA

SwissRegulon 
(http://www.swissregulon.unibas.ch)

MARA
(http://www.swissregulon.unibas.ch/mara)

• Upload your own data.
• Automated Motif Activity Response Analysis:

• Significant motifs affecting expression.
• Motif activities.
• Target promoter lists.
• Associated GO-terms.

• Human and mouse promoteromes.
• Regulatory motif weight matrices.
• Predicted regulatory sites genome-wide.
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