Nonlinear m_{t} and α tensors

MRI dynamos: \rightarrow recordings in Princeton and here Mean-field paradigm: linear \rightarrow nonlinear Turbulent diffusivity: a final frontier

Axel Brandenburg (Nordita, S , kholm) with Kan-Heinz Rädler, Matth as Sheinhardt,

Kandaswamy Subraman an

Examples where α and η_{t} at work?

Helical turbulence $\left(B_{y}\right)$

Convection with shear

Helical shear flow turb.

Magneto-rotational Inst.

Dynamo in kinematic stage no large-scale field?

Fully helical turbulence, periodic box, resistive time scale!

Large-scale dynamo = nonlinear?

No kinematic stage of large-scale dynamo?

Large-scale field only during nonlinear stage!
Can we identify large-scale dynamo during kinematic stage?

... yes, with red/blue goggles

Chandrasekhar-Kendall decomposition Brandenburg, Dobler, \& Subramanian (2002) Brandenburg \& Subramanian (2005)

Nonlinear stage: consistent with ...

$$
\alpha=\frac{\alpha_{K}+R_{m}\left[\left(\eta_{\mathrm{t}} \overline{\mathbf{J}} \cdot \overline{\mathbf{B}}-\frac{1}{2} k_{\mathrm{f}}^{-2} \nabla \cdot \overline{\mathbf{F}}_{\mathrm{C}}^{\mathrm{ss}}\right) / B_{e q}^{2}-\frac{\partial \alpha / \partial t}{2 \eta_{\mathrm{t}} k_{\mathrm{f}}^{2}}\right]}{1+R_{m} \overline{\mathbf{B}}^{2} / B_{e q}^{2}}
$$

6

Quenching of η_{t} ??

$$
\alpha=\frac{\alpha_{K}+R_{m}\left[\left(\eta_{\mathrm{I}} \overline{\mathbf{J}} \cdot \overline{\mathbf{B}}-\frac{1}{2} k_{\mathrm{f}}^{-2} \nabla \cdot \overline{\mathbf{F}}_{\mathrm{C}}^{\mathrm{ss}}\right) B_{e q}^{2}-\frac{\partial \alpha / \partial t}{2 \eta_{\mathrm{t}} k_{\mathrm{f}}^{2}}\right]}{1+R_{m} \overline{\mathbf{B}}^{2} / B_{e q}^{2}}
$$

Yousef et al.
(2003, A\&A)

$$
R_{m} \rightarrow \infty: \quad \alpha=\eta_{\mathrm{t}} \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} / \overline{\mathbf{B}}^{2}=\eta_{\mathrm{t}} k_{\mathrm{m}}
$$

$$
\eta_{\mathrm{t}}=\frac{\eta_{\mathrm{t} 0}}{1+g\left|\overline{\mathbf{B}} / B_{e q}\right|}, \quad g=3
$$

Calculate full $\alpha_{i j}$ and $\eta_{i j}$ tensors

Response to arbitrary mean fields
$\frac{\partial \mathbf{b}^{p q}}{\partial t}=\nabla \times\left(\overline{\mathbf{U}} \times \mathbf{b}^{p q}+\mathbf{u} \times \overline{\mathbf{B}}^{p q}+\mathbf{u} \times \mathbf{b}^{p q}-\overline{\mathbf{u} \times \mathbf{b}^{p q}}\right)+\eta \nabla^{2} \mathbf{b}^{p q}$
Calculate

$$
\overline{\boldsymbol{\varepsilon}}^{p q}=\overline{\mathbf{u} \times \mathbf{b}^{p q}}
$$

$$
\overline{\boldsymbol{E}}_{j}^{p q}=\alpha_{i j} \bar{B}_{j}^{p q}+\eta_{i j k} \bar{B}_{j, k}^{p q}
$$

Example:
$\overline{\mathbf{B}}^{11}=\left(\begin{array}{c}\cos k z \\ 0 \\ 0\end{array}\right), \quad \overline{\mathbf{B}}^{21}=\left(\begin{array}{c}\sin k z \\ 0 \\ 0\end{array}\right), \ldots$
$\bar{\varepsilon}_{1}^{11}=\alpha_{11} \cos k z-\eta_{113} k \sin k z$
$\bar{\varepsilon}_{1}^{21}=\alpha_{11} \sin k z+\eta_{113} k \cos k z$

$$
\binom{\alpha_{11}}{\eta_{113} k}=\left(\begin{array}{cc}
\cos k z & \sin k z \\
-\sin k z & \cos k z
\end{array}\right)\binom{\overline{\boldsymbol{\varepsilon}}_{1}^{11}}{\overline{\boldsymbol{\varepsilon}}_{1}^{21}} \quad\left(\begin{array}{cc}
\eta_{11}^{*} & \eta_{12}^{*} \\
\eta_{21}^{2} & \eta_{22}
\end{array}\right)=\left(\begin{array}{cc}
\eta_{13} & -\eta_{13} \\
\eta_{223} & -\eta_{23}
\end{array}\right)
$$

Kinematic α and η_{t}

independent of Rm (2...200)

$$
\begin{aligned}
& \alpha_{0}=-\frac{1}{3} \tau\langle\mathbf{u} \cdot \mathbf{u}\rangle \\
& \eta_{0}=\frac{1}{3} \tau\left\langle\mathbf{u}^{2}\right\rangle \\
& \tau=\left(u_{\mathrm{rms}} k_{\mathrm{f}}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{0}=-\frac{1}{3} u_{\mathrm{rms}} \\
& \eta_{0}=\frac{1}{3} u_{\mathrm{rms}} k_{\mathrm{f}}^{-1}
\end{aligned}
$$

Sur et al. (2008, MNRAS)

From linear to nonlinear

$$
\begin{gathered}
\frac{\partial \boldsymbol{U}}{\partial t}=-\boldsymbol{U} \cdot \boldsymbol{\nabla} \boldsymbol{U}-c_{s}^{2} \boldsymbol{\nabla} \ln \rho+\boldsymbol{f}+\rho^{-1}(\boldsymbol{J} \times \boldsymbol{B}+\boldsymbol{\nabla} \cdot 2 \rho v \mathbf{S}), \\
\frac{\partial \ln \rho}{\partial t}=-\boldsymbol{U} \cdot \boldsymbol{\nabla} \ln \rho-\boldsymbol{\nabla} \cdot \boldsymbol{U}, \\
\frac{\partial \boldsymbol{A}}{\partial t}=\boldsymbol{U} \times \boldsymbol{B}-\mu_{0} \eta \boldsymbol{J}, \\
\frac{\partial \boldsymbol{a}^{p q}}{\partial t}=\overline{\boldsymbol{U}} \times \boldsymbol{b}^{p q}+\boldsymbol{u} \times \overline{\boldsymbol{B}}^{p q}+\boldsymbol{u} \times \boldsymbol{b}^{p q}-\overline{\boldsymbol{u} \times \boldsymbol{b}^{p q}}-\mu_{0} \eta \boldsymbol{j}^{p q},
\end{gathered}
$$

Mean and fluctuating
\boldsymbol{U} enter separately

$$
\mathbf{U}=\overline{\mathbf{U}}+\mathbf{u}
$$

Use vector potential

$$
\begin{aligned}
& \mathbf{B}=\nabla \times \mathbf{A} \\
& \mathbf{b}^{p q}=\nabla \times \mathbf{a}^{p q}
\end{aligned}
$$

Nonlinear $\alpha_{i j}$ and $\eta_{i j}$ tensors

$$
\begin{aligned}
\alpha_{i j} & =\alpha_{1} \delta_{i j}+\alpha_{2} \hat{B}_{i} \hat{B}_{j} \\
\eta_{i j} & =\eta_{1} \delta_{i j}+\eta_{2} \hat{B}_{i} \hat{B}_{j}
\end{aligned}
$$

Consider steady state to avoid $\mathrm{d} \alpha / \mathrm{d} t$ terms

$$
\text { Expect: } \quad \begin{aligned}
\lambda & =\alpha k_{1}-\left(\eta+\eta_{t}\right) k_{1}^{2} \\
& =\left(\alpha_{1}+\alpha_{2}\right) k_{1}-\left(\eta+\eta_{1}+\eta_{2}\right) k_{1}^{2} \\
& =0
\end{aligned}
$$

$\lambda=0$ (within error bars) \rightarrow consistency check!

R_{m} dependence for $\mathrm{B} \sim \mathrm{B}_{\text {eq }}$

(i) λ is small \rightarrow consistency (ii) α_{1} and α_{2} tend to cancel (iii) making α small (iv) η_{2} small

Run	Re_{M}	\tilde{B}^{2}	\tilde{b}^{2}	$\tilde{\boldsymbol{\alpha}}$	$\tilde{\eta}_{t}$	$\tilde{\eta}$	$\tilde{\lambda}$	$-\tilde{\alpha}_{2}$	$-\tilde{\eta}_{2}$	$\tilde{\alpha}_{\text {rms }}$	$\tilde{\eta}_{\text {rms }}$	$+\tilde{\alpha}_{K}$	$-\tilde{\alpha}_{M}$	$\Delta \tilde{t}$
A	2	0.0	0.0	0.70 ± 0.03	0.67 ± 0.07	1.57	-0.14 ± 0.01	0.04 ± 0.05	-0.02 ± 0.06	0.09	0.12	1.03	0.01	150
B	4	0.9	0.4	0.44 ± 0.01	0.58 ± 0.04	0.73	0.00 ± 0.00	0.33 ± 0.02	-0.11 ± 0.03	0.10	0.21	1.02	0.31	422
C	12	1.7	0.7	0.24 ± 0.01	0.46 ± 0.02	0.25	0.00 ± 0.00	0.37 ± 0.02	-0.04 ± 0.01	0.09	0.16	1.00	0.55	601
D	30	1.9	0.8	0.16 ± 0.01	0.36 ± 0.02	0.11	-0.00 ± 0.01	0.37 ± 0.02	0.03 ± 0.03	0.07	0.14	1.02	0.62	350
E	60	2.0	0.8	0.09 ± 0.01	0.22 ± 0.02	0.05	0.00 ± 0.01	0.33 ± 0.01	0.05 ± 0.01	0.09	0.22	1.00	0.66	711
F	150	2.0	0.9	0.07 ± 0.00	0.19 ± 0.01	0.02	0.01 ± 0.01	0.24 ± 0.05	0.08 ± 0.01	0.07	0.16	1.01	0.69	225
G	300	1.8	0.9	0.06 ± 0.00	0.15 ± 0.00	0.01	0.01 ± 0.01	0.21 ± 0.02	0.05 ± 0.02	0.06	0.16	1.01	0.66	177
H	600	1.8	0.9	0.05 ± 0.01	0.13 ± 0.01	0.005	0.01 ± 0.04	0.14 ± 0.05	0.04 ± 0.01	0.05	0.10	1.03	0.64	44

Cooperation with small-scale dynamo

At large $\operatorname{Rm} \alpha$ and η_{t} develop divergent fluctuations, but the running mean is well defined

turbulence

time averaging and regular restarting of $b^{p q}$ required

