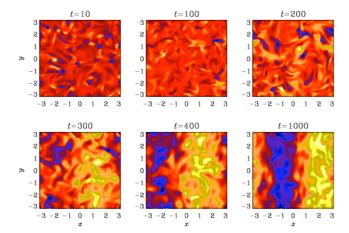
Nonlinear η_t and α tensors

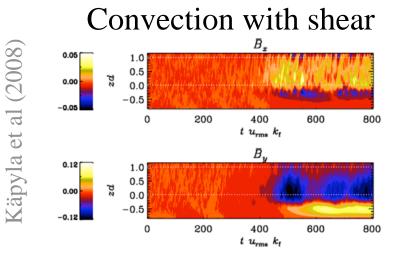
MRI dynamos: \rightarrow recordings in Princeton and here Mean-field paradigm: linear \rightarrow nonlinear Turbulent diffusivity: a final frontier

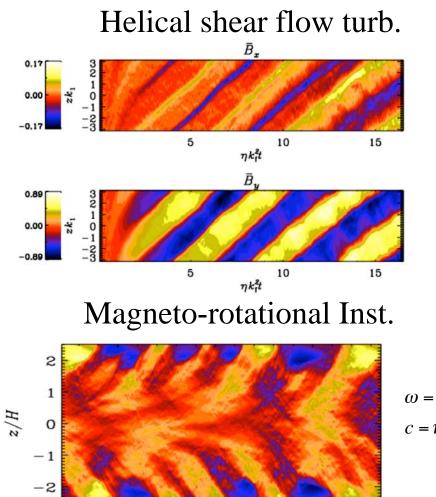
Axel Brandenburg (*Nordita, Stockholm*) with Karl-Heinz Rädler, Matthias Rheinhardt, Kandaswamy Subramanian

Examples where α and η_t at work?

Helical turbulence (B_y)



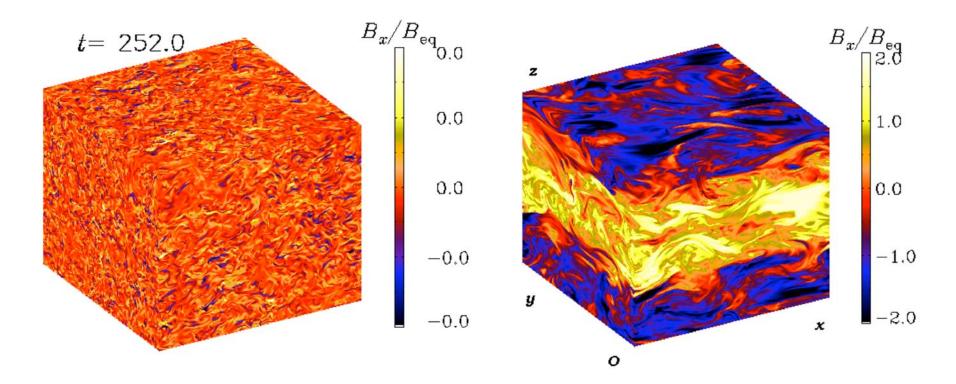




550 600 650 t/T_{rot}

 $\omega = \eta_{t} k_{1}^{2}$ $c = \eta_{t} k_{1}$

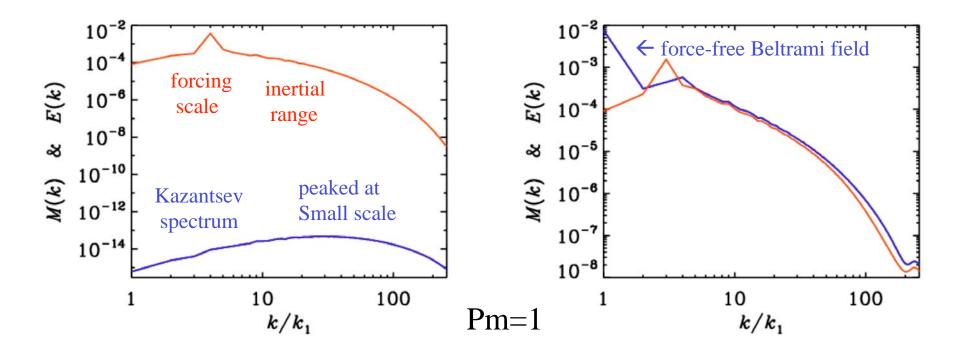
Dynamo in kinematic stage – no large-scale field?



Fully helical turbulence, periodic box, resistive time scale!

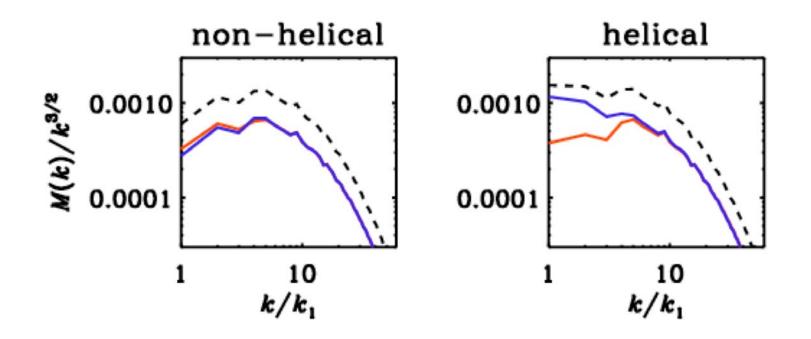
Large-scale dynamo = nonlinear?

No kinematic stage of large-scale dynamo?



Large-scale field only during nonlinear stage! Can we identify large-scale dynamo during kinematic stage?

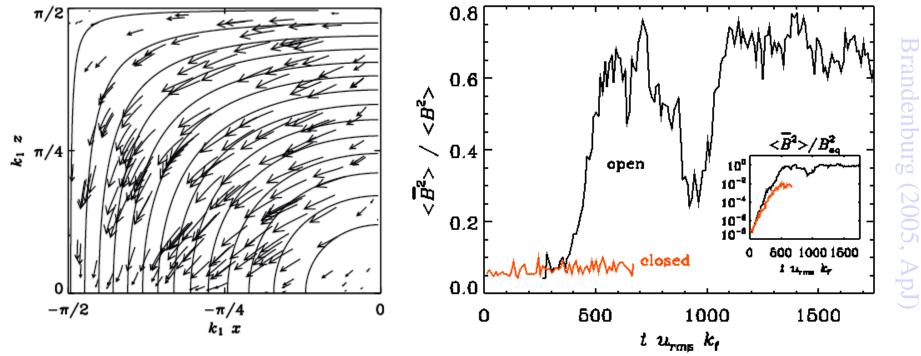
... yes, with red/blue goggles



Chandrasekhar-Kendall decomposition Brandenburg, Dobler, & Subramanian (2002) Brandenburg & Subramanian (2005)

Nonlinear stage: consistent with ...

$$\alpha = \frac{\alpha_{K} + R_{m} \left[\left(\eta_{t} \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} - \frac{1}{2} k_{f}^{-2} \nabla \cdot \overline{\mathbf{F}}_{C}^{SS} \right) B_{eq}^{2} - \frac{\partial \alpha / \partial t}{2 \eta_{t} k_{f}^{2}} \right]}{1 + R_{m} \overline{\mathbf{B}}^{2} / B_{eq}^{2}}$$



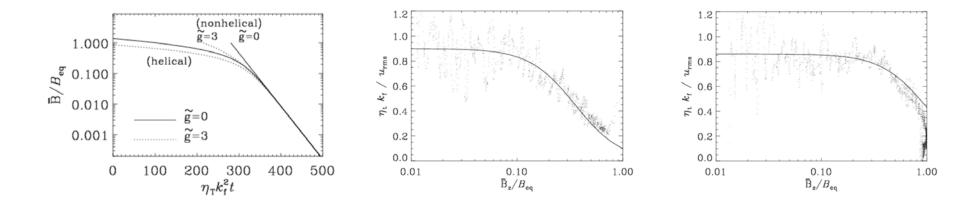
 $\overline{\mathbf{F}}_{\mathrm{C}}^{\mathrm{SS}} = C_{VC} \left(\overline{\mathbf{S}} \,\overline{\mathbf{B}} \right) \times \overline{\mathbf{B}}, \qquad \overline{\mathrm{S}}_{\mathrm{ij}} = \frac{1}{2} \left(\overline{U}_{i,j} + \overline{U}_{j,i} \right)$

Quenching of η_t ??

$$\alpha = \frac{\alpha_{K} + R_{m} \left[\left(\boldsymbol{\eta}_{t} \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} - \frac{1}{2} k_{f}^{-2} \nabla \cdot \overline{\mathbf{F}}_{C}^{SS} \right) B_{eq}^{2} - \frac{\partial \alpha / \partial t}{2 \eta_{t} k_{f}^{2}} \right]}{1 + R_{m} \overline{\mathbf{B}}^{2} / B_{eq}^{2}}$$

Yousef et al. (2003, A&A)

$$R_m \rightarrow \infty$$
: $\alpha = \eta_t \overline{\mathbf{J}} \cdot \overline{\mathbf{B}} / \overline{\mathbf{B}}^2 = \eta_t k_m$



$$\eta_{t} = \frac{\eta_{t0}}{1 + g \left| \overline{\mathbf{B}} / B_{eq} \right|}, \quad g = 3$$

Calculate full α_{ij} and η_{ij} tensors

Response to arbitrary mean fields

$$\frac{\partial \mathbf{b}^{pq}}{\partial t} = \nabla \times \left(\overline{\mathbf{U}} \times \mathbf{b}^{pq} + \mathbf{u} \times \overline{\mathbf{B}}^{pq} + \mathbf{u} \times \mathbf{b}^{pq} - \overline{\mathbf{u} \times \mathbf{b}^{pq}} \right) + \eta \nabla^2 \mathbf{b}^{pq}$$

Calculate

 $\overline{\boldsymbol{\mathcal{E}}}^{pq} = \mathbf{u} \times \mathbf{b}^{pq}$

$$\overline{\mathcal{E}}_{j}^{pq} = \alpha_{ij}\overline{B}_{j}^{pq} + \eta_{ijk}\overline{B}_{j,k}^{pq}$$

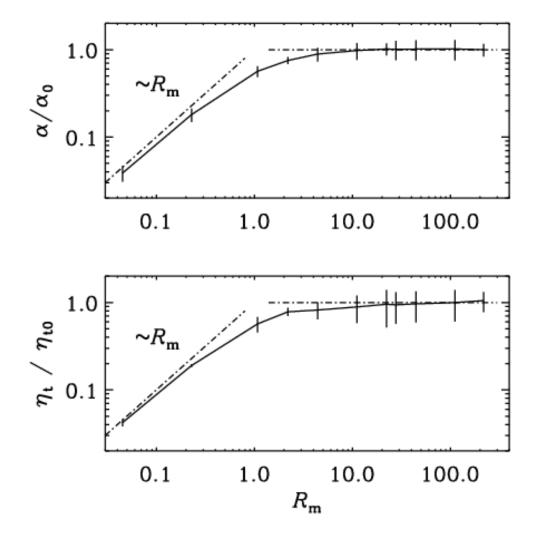
8

Example:

$$\overline{\mathbf{B}}^{11} = \begin{pmatrix} \cos kz \\ 0 \\ 0 \end{pmatrix}, \quad \overline{\mathbf{B}}^{21} = \begin{pmatrix} \sin kz \\ 0 \\ 0 \end{pmatrix}, \quad \dots \quad \overline{\mathbf{E}}_{1}^{11} = \alpha_{11} \cos kz - \eta_{113} k \sin kz$$
$$\overline{\mathbf{E}}_{1}^{21} = \alpha_{11} \sin kz + \eta_{113} k \cos kz$$

$$\begin{pmatrix} \alpha_{11} \\ \eta_{113}k \end{pmatrix} = \begin{pmatrix} \cos kz & \sin kz \\ -\sin kz & \cos kz \end{pmatrix} \begin{pmatrix} \overline{\boldsymbol{\mathcal{E}}}_{1}^{11} \\ \overline{\boldsymbol{\mathcal{E}}}_{1}^{21} \end{pmatrix} \qquad \begin{pmatrix} \eta_{11}^{*} & \eta_{12}^{*} \\ \eta_{21}^{*} & \eta_{22}^{*} \end{pmatrix} = \begin{pmatrix} \eta_{123} & -\eta_{113} \\ \eta_{223}^{*} & -\eta_{213} \end{pmatrix}$$

Kinematic α and η_t independent of Rm (2...200)



$$\alpha_0 = -\frac{1}{3}\tau \langle \mathbf{\hat{u}} \cdot \mathbf{u} \rangle$$
$$\eta_0 = \frac{1}{3}\tau \langle \mathbf{u}^2 \rangle$$
$$\tau = (u_{\rm rms}k_{\rm f})^{-1}$$

$$\alpha_0 = -\frac{1}{3}u_{\rm rms}$$
$$\eta_0 = \frac{1}{3}u_{\rm rms}k_{\rm f}^{-1}$$

Sur et al. (2008, MNRAS)

From linear to nonlinear

$$\begin{split} \frac{\partial \boldsymbol{U}}{\partial t} &= -\boldsymbol{U} \cdot \boldsymbol{\nabla} \boldsymbol{U} - c_s^2 \boldsymbol{\nabla} \ln \rho + \boldsymbol{f} + \rho^{-1} \Big(\boldsymbol{J} \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot 2\rho \boldsymbol{v} \boldsymbol{S} \Big), \\ \frac{\partial \ln \rho}{\partial t} &= -\boldsymbol{U} \cdot \boldsymbol{\nabla} \ln \rho - \boldsymbol{\nabla} \cdot \boldsymbol{U}, \\ \frac{\partial \boldsymbol{A}}{\partial t} &= \boldsymbol{U} \times \boldsymbol{B} - \mu_0 \eta \boldsymbol{J}, \\ \frac{\partial \boldsymbol{a}^{pq}}{\partial t} &= \boldsymbol{\overline{U}} \times \boldsymbol{b}^{pq} + \boldsymbol{u} \times \boldsymbol{\overline{B}}^{pq} + \boldsymbol{u} \times \boldsymbol{b}^{pq} - \boldsymbol{\overline{u}} \times \boldsymbol{b}^{pq} - \mu_0 \eta \boldsymbol{j}^{pq}, \end{split}$$

Mean and fluctuating
$$U$$
 enter separatelyUse vector potential $U = \overline{U} + u$ $B = \nabla \times A$ $b^{pq} = \nabla \times a^{pq}$ 10

Nonlinear α_{ij} and η_{ij} tensors $\alpha_{ij} = \alpha_1 \delta_{ij} + \alpha_2 \hat{B}_i \hat{B}_j$ $\eta_{ij} = \eta_1 \delta_{ij} + \eta_2 \hat{B}_i \hat{B}_j$

Consider steady state to avoid $d\alpha/dt$ terms

Expect:

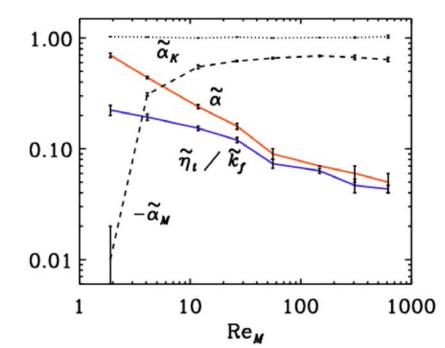
$$\lambda = \alpha k_1 - (\eta + \eta_1) k_1^2$$

$$= (\alpha_1 + \alpha_2) k_1 - (\eta + \eta_1 + \eta_2) k_1^2$$

$$= 0$$

 $\lambda = 0$ (within error bars) \rightarrow consistency check!

$R_{\rm m}$ dependence for B~B_{eq}

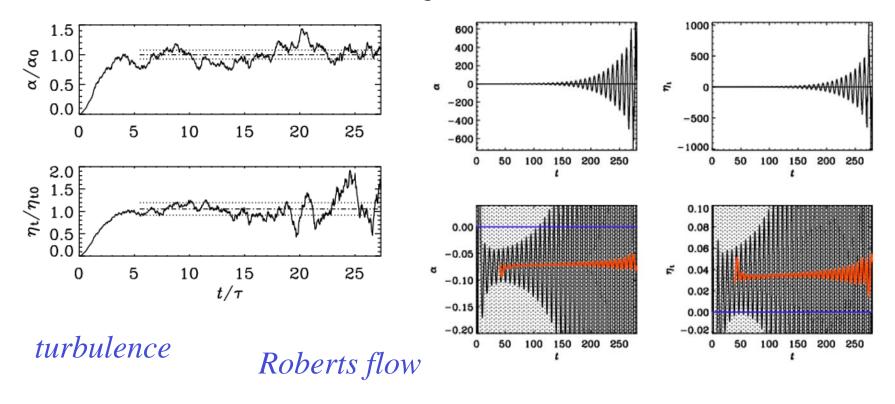


(i) λ is small \rightarrow consistency (ii) α_1 and α_2 tend to cancel (iii) making α small (iv) η_2 small

Run	Re _M	\tilde{B}^2	\tilde{b}^2	ã	$\tilde{\eta}_t$	η	λ	$-\tilde{\alpha}_2$	$-\tilde{\eta}_2$	$\tilde{\alpha}_{\rm rms}$	$\tilde{\eta}_{\rm rms}$	$+\tilde{\alpha}_{K}$	$-\tilde{\alpha}_M$	$\Delta \tilde{t}$
A B C D E F G H	4 12 30 60 150	0.0 0.9 1.7 1.9 2.0 2.0 1.8 1.8	0.0 0.4 0.7 0.8 0.8 0.9 0.9 0.9	$\begin{array}{c} 0.70 \pm 0.03 \\ 0.44 \pm 0.01 \\ 0.24 \pm 0.01 \\ 0.16 \pm 0.01 \\ 0.09 \pm 0.01 \\ 0.07 \pm 0.00 \\ 0.06 \pm 0.00 \\ 0.05 \pm 0.01 \end{array}$	$\begin{array}{c} 0.67 \pm 0.07 \\ 0.58 \pm 0.04 \\ 0.46 \pm 0.02 \\ 0.36 \pm 0.02 \\ 0.22 \pm 0.02 \\ 0.19 \pm 0.01 \\ 0.15 \pm 0.00 \\ 0.13 \pm 0.01 \end{array}$	$\begin{array}{c} 1.57\\ 0.73\\ 0.25\\ 0.11\\ 0.05\\ 0.02\\ 0.01\\ 0.005\\ \end{array}$	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \\ -0.00 \pm 0.01 \\ 0.00 \pm 0.01 \\ 0.01 \pm 0.01 \\ 0.01 \pm 0.01 \end{array}$	$\begin{array}{c} 0.04 \pm 0.05 \\ 0.33 \pm 0.02 \\ 0.37 \pm 0.02 \\ 0.37 \pm 0.02 \\ 0.33 \pm 0.01 \\ 0.24 \pm 0.05 \\ 0.21 \pm 0.02 \\ 0.14 \pm 0.05 \end{array}$	$\begin{array}{c} -0.02 \pm 0.06 \\ -0.11 \pm 0.03 \\ -0.04 \pm 0.01 \\ 0.03 \pm 0.03 \\ 0.05 \pm 0.01 \\ 0.08 \pm 0.01 \\ 0.05 \pm 0.02 \\ 0.04 \pm 0.01 \end{array}$	0.09 0.10 0.09 0.07 0.09 0.07 0.06 0.05	$\begin{array}{c} 0.12 \\ 0.21 \\ 0.16 \\ 0.14 \\ 0.22 \\ 0.16 \\ 0.10 \end{array}$	1.03 1.02 1.00 1.02 1.00 1.01 1.01 1.03	$\begin{array}{c} 0.01 \\ 0.31 \\ 0.55 \\ 0.62 \\ 0.66 \\ 0.69 \\ 0.66 \\ 0.64 \end{array}$	150 422 601 350 711 225 177 44

Cooperation with small-scale dynamo

At large Rm α and η_t develop divergent fluctuations, but the running mean is well defined



time averaging and regular restarting of b^{pq} required