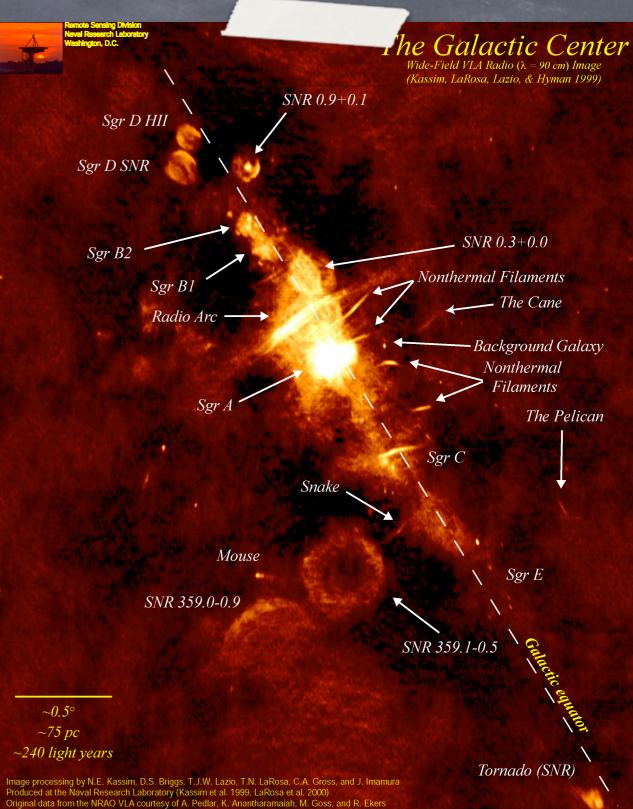
A Multi-Scale Approach to MHD Turbulence in Accretion Disks

Chi-kwan Chan ITC@CfA

Thank: D. Psaltis (Arizona), M. Pessah (IAS); R. Narayan (CfA), R. Shcherbakov (CfA); S. Succi (CNR)

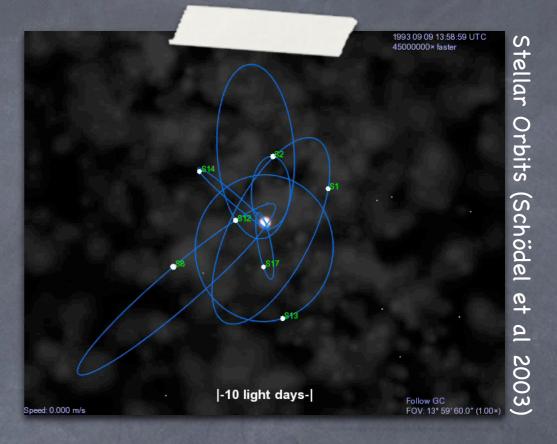
Case Study: Galactic Center

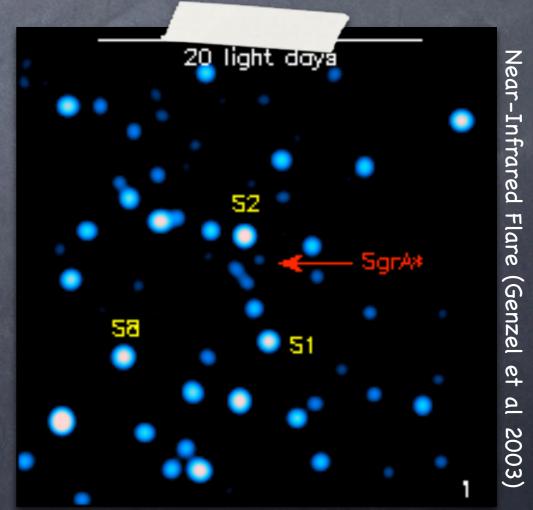
Chan, Liu, Fryer, Psaltis, Ozel, Rockefeller, Melia (2008)



URL: http://rsd-www.nrl.navy.mil/7213/lazio/GC

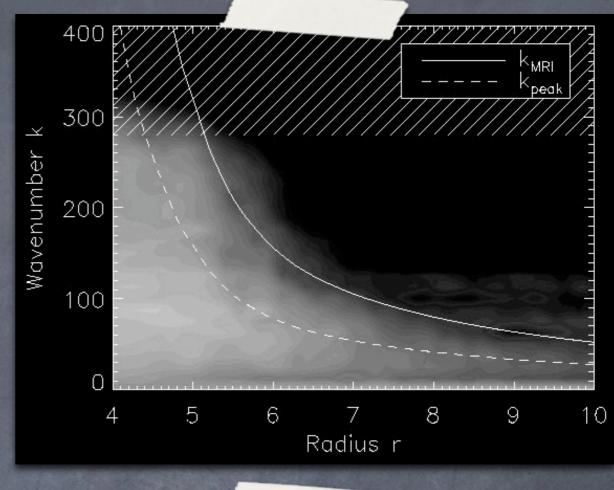
Wide-Field VLA Radio Image (Kassim, LaRosa, Lazio, & Hyman 1999) http://rsd-www.nrl.navy.mil/7213/lazio/GC Supermassive black hole
Radiatively inefficient accretion disk
Flares seen once a day
Quasi-periodic signals observed during flares

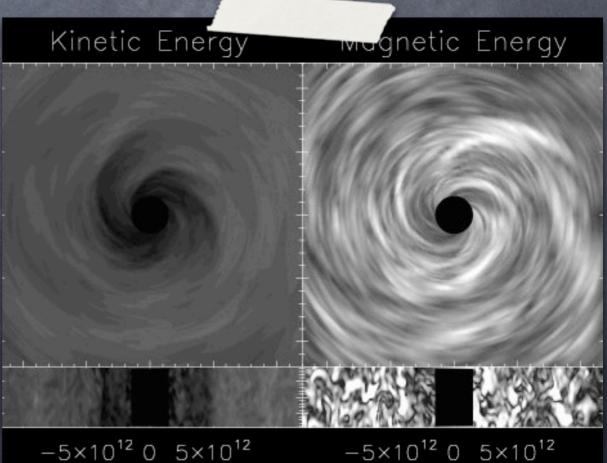




Seudo-spectral code with super-vanish viscosity

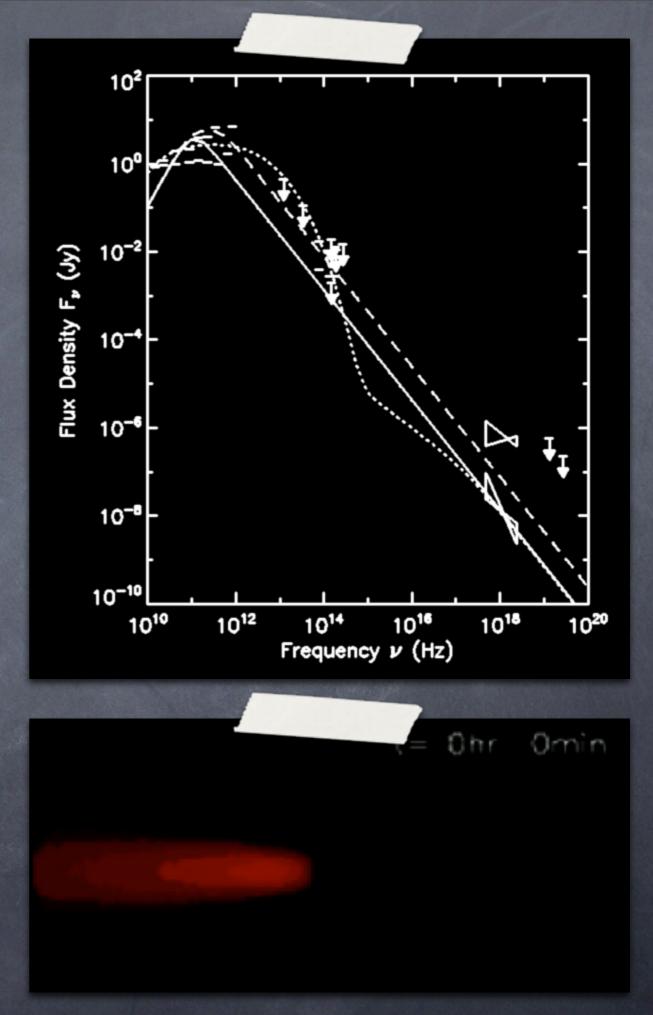
- Vector potential for magnetic field
- Seudo-Newtonian gravity
- Properties of linear growth agrees with the MRI





No radiation feedback

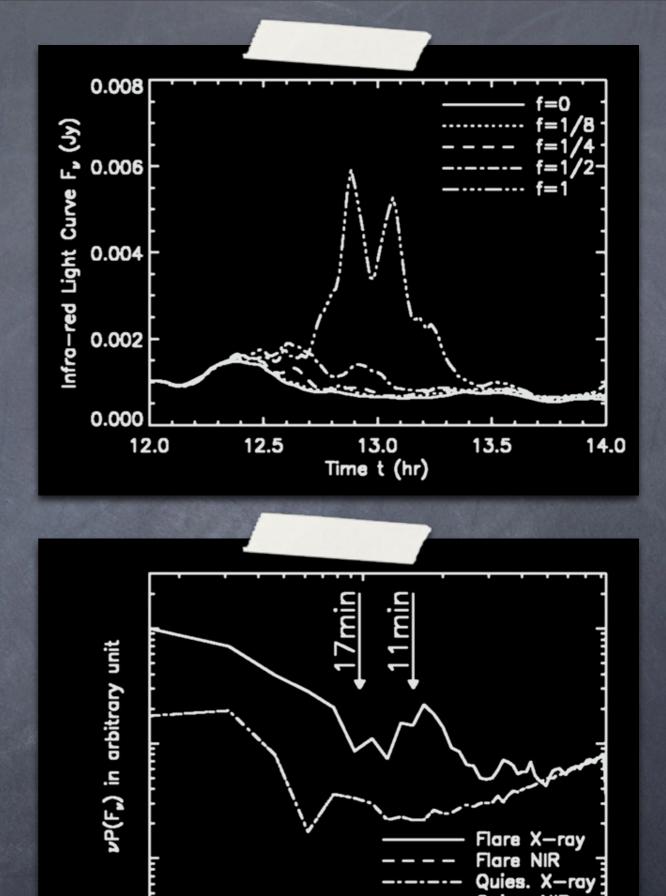
- Synchrotron radiation as post-process
- Assume hybrid thermalnonthermal electron distribution (Ozel & Narayan 2000)
- Use quiescent spectrum to fit electron distribution
- Study flares



 Parameter study of clumpy material falling onto the Galactic black hole

Flares depend very nonlinearly of the perturbation

Quasi-periodic
 oscillations associate
 with magneto-sonic
 point at 2.4 rs instead
 of ISCO (3 rs)



0.001

Temporal Frequency ν (Hz)

Limitations

Need General Relativity
Need Vertical Structure
Need Plasma Physics

1/R

1/H

Multi-Scale Problem

1/H

Vertical Structure

"Gapless" Energy Spectrum N ~ Re^{9/4} > 10²⁷

Plasma Physics

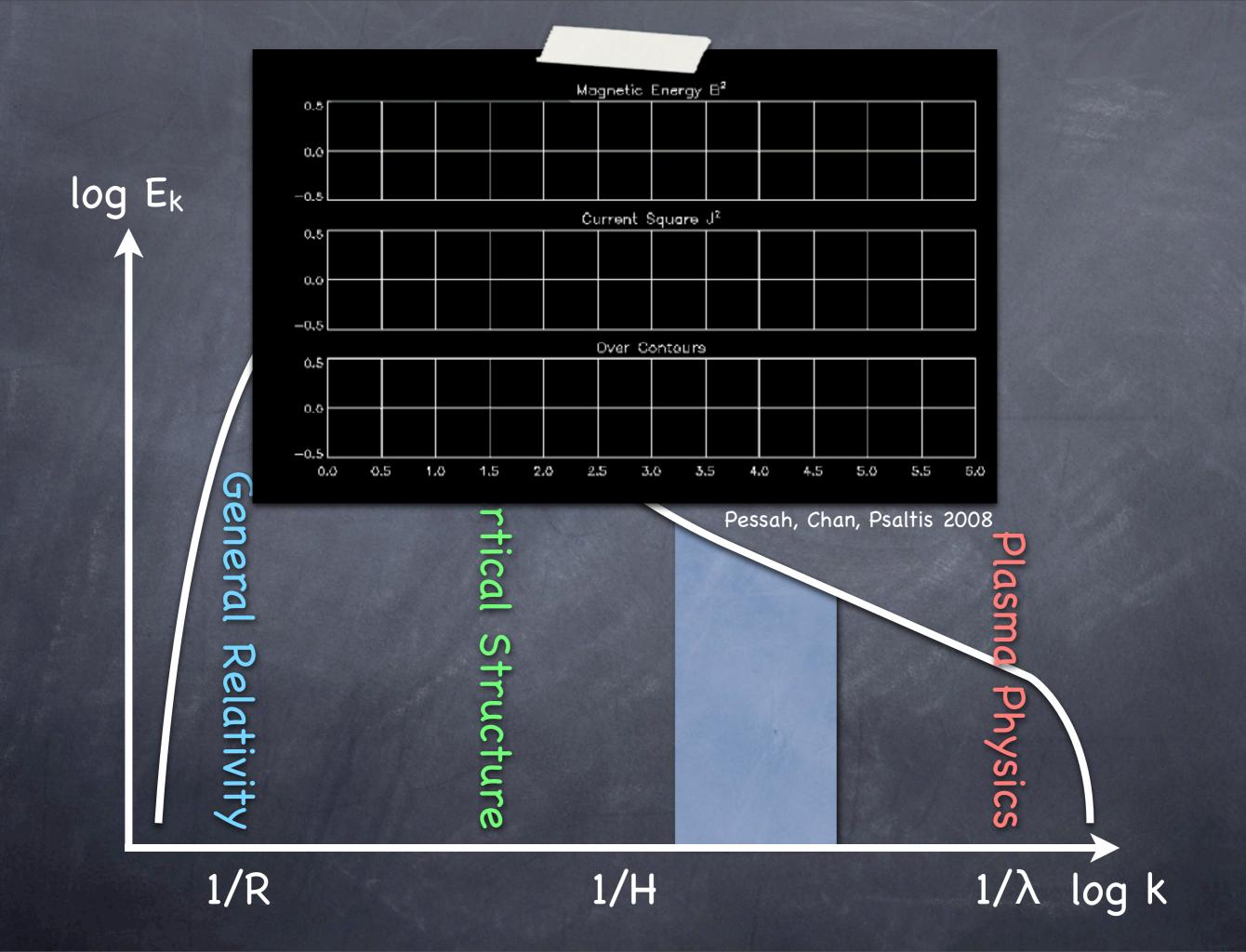
 $1/\lambda$

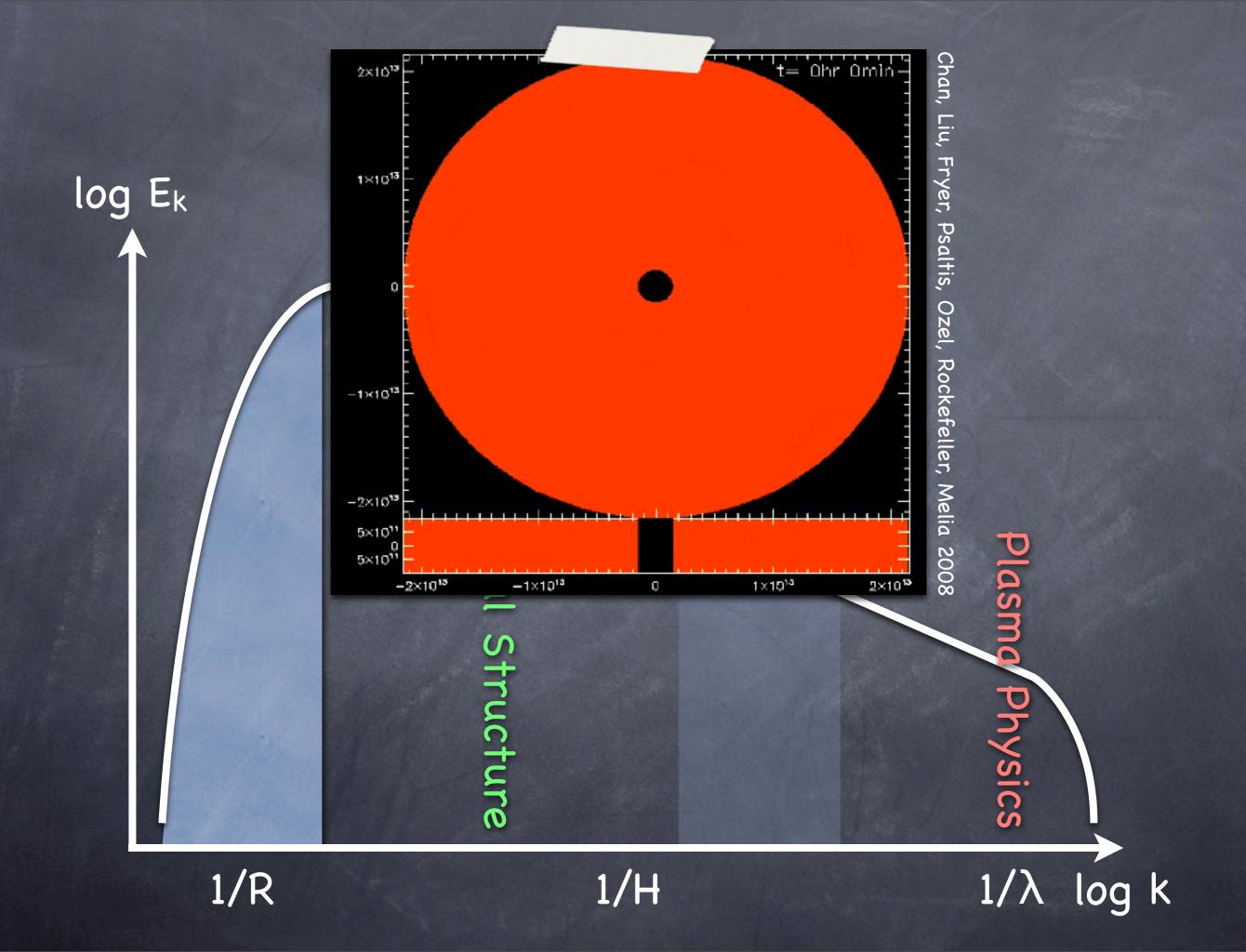
log k

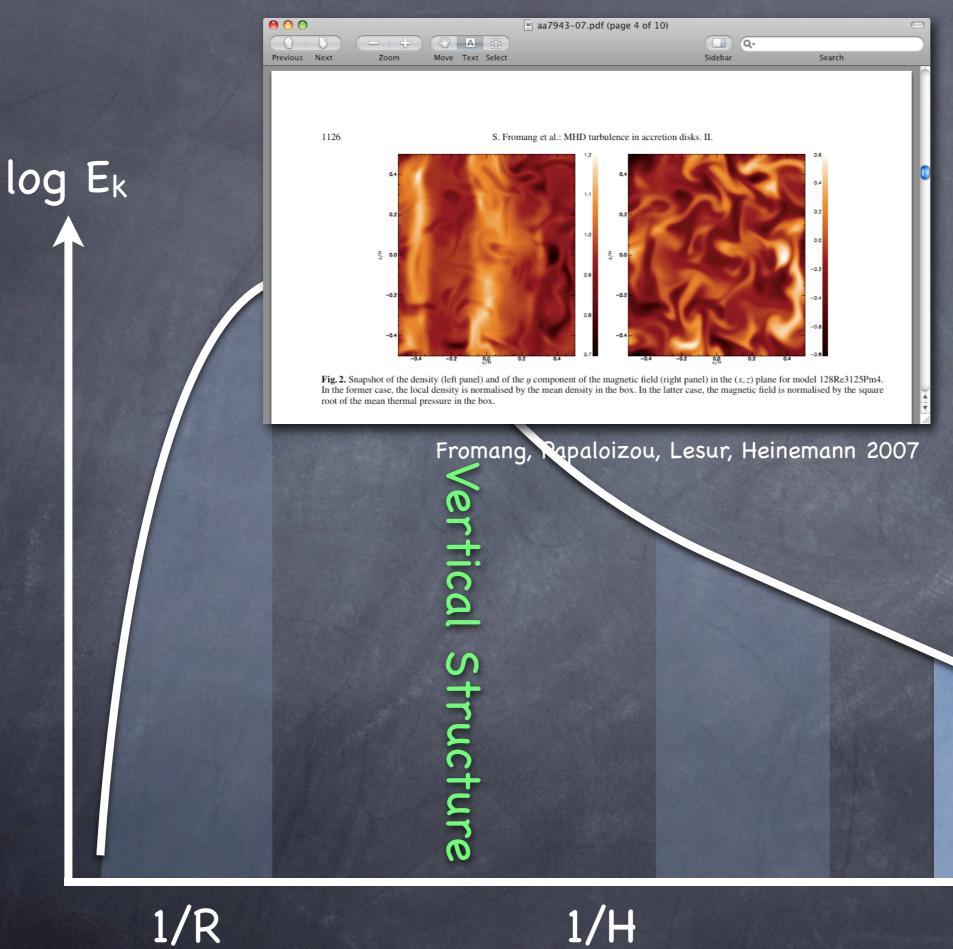
MHD Turbulence

1/R

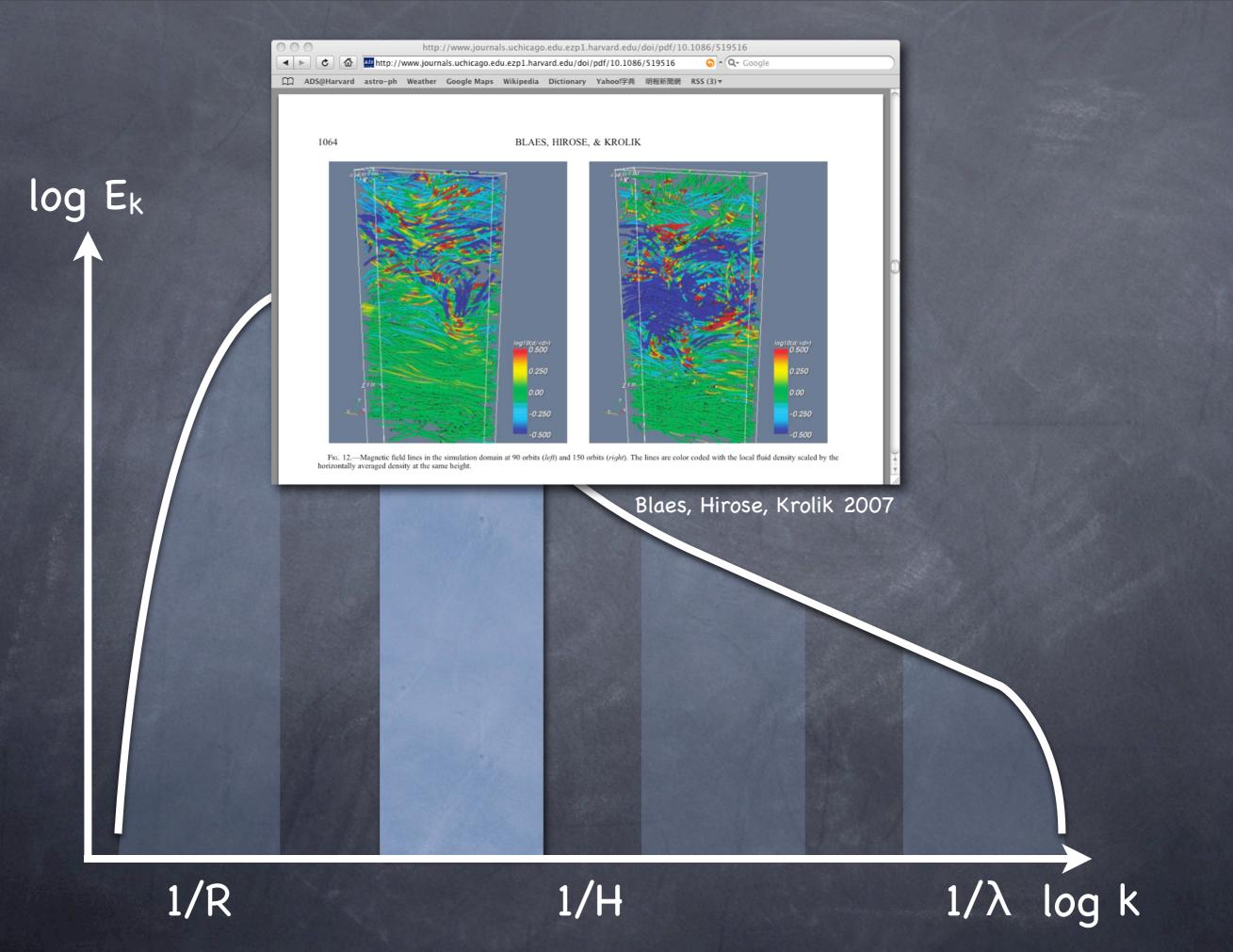
General Relativity

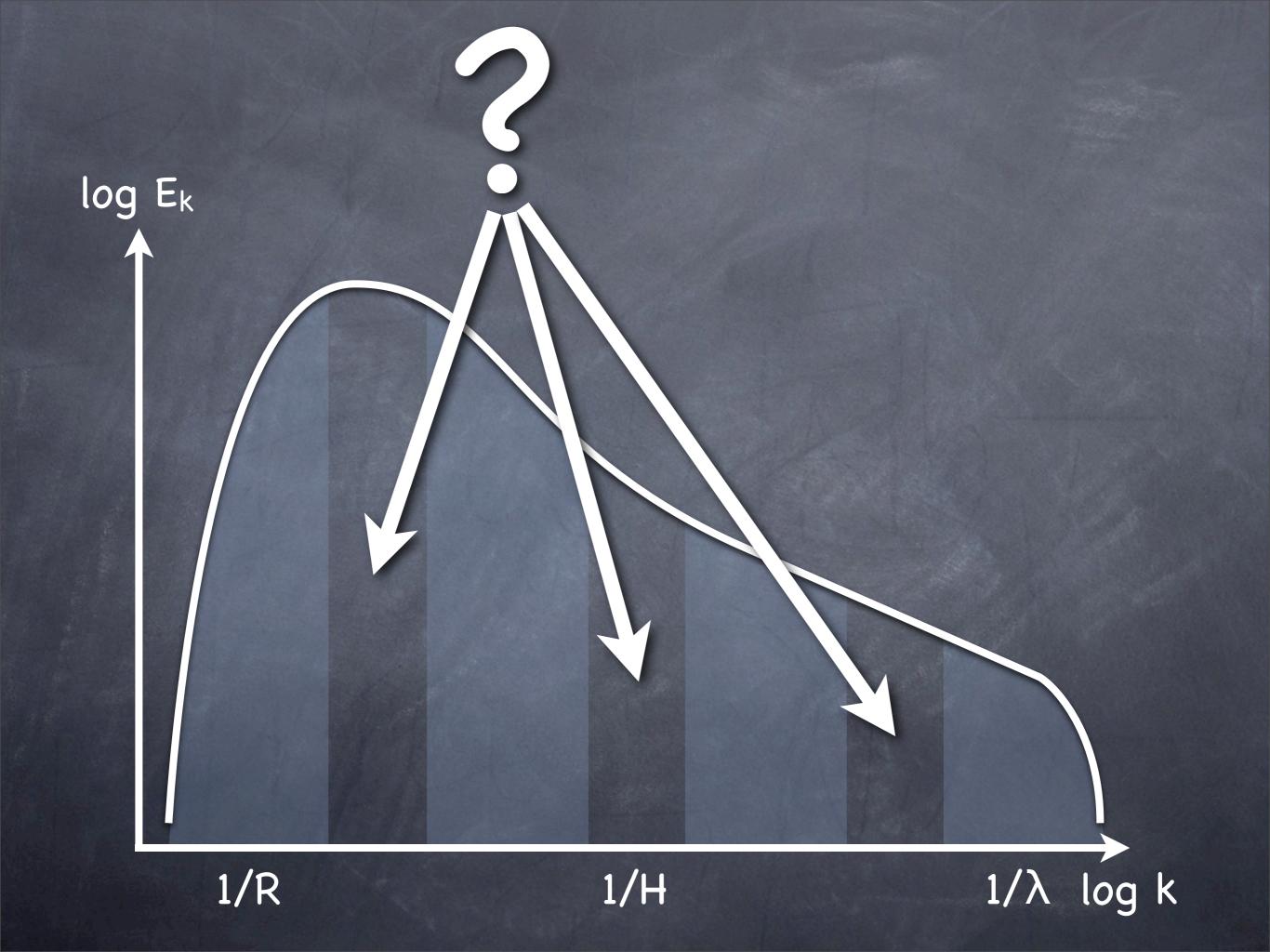


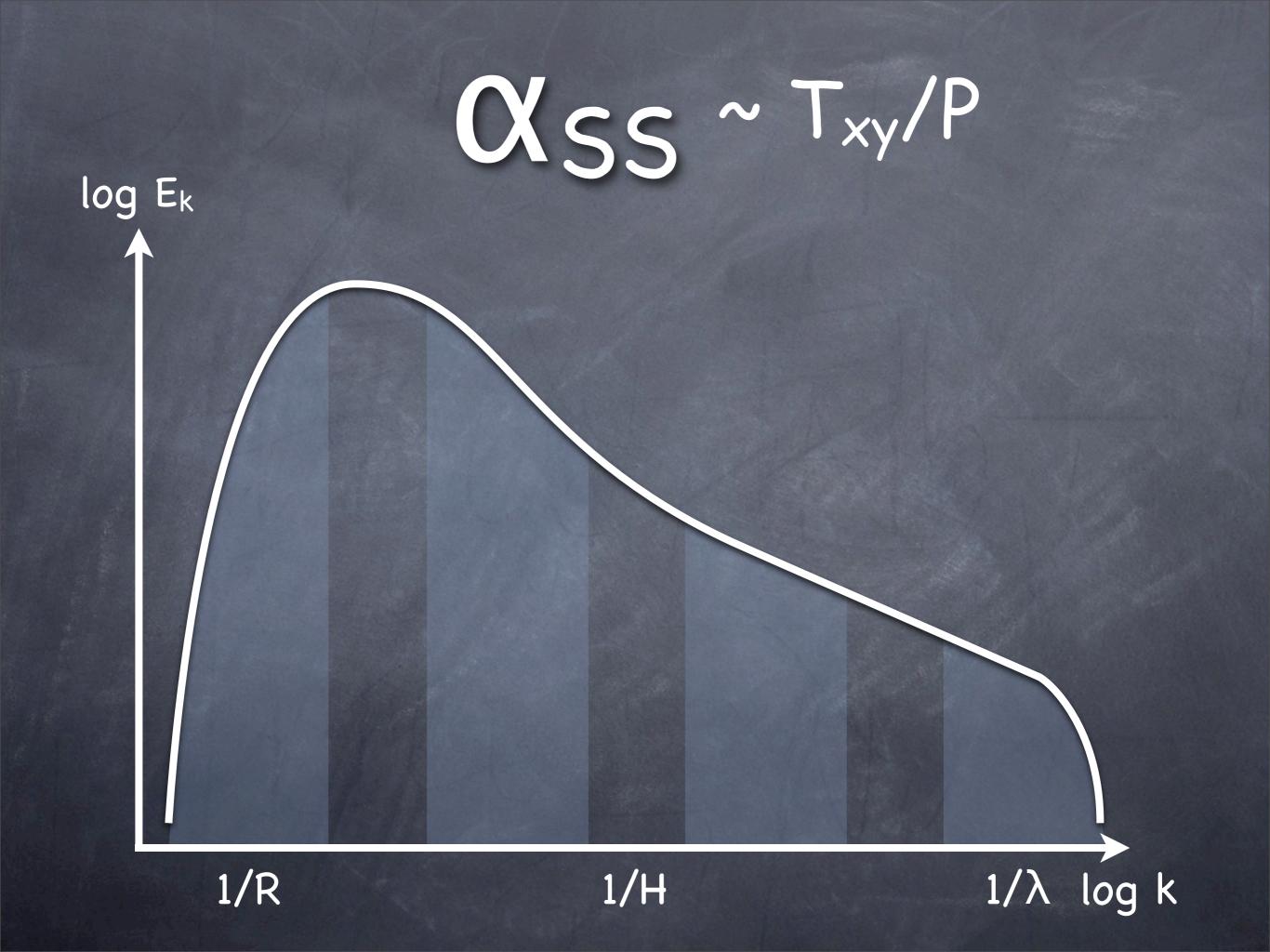


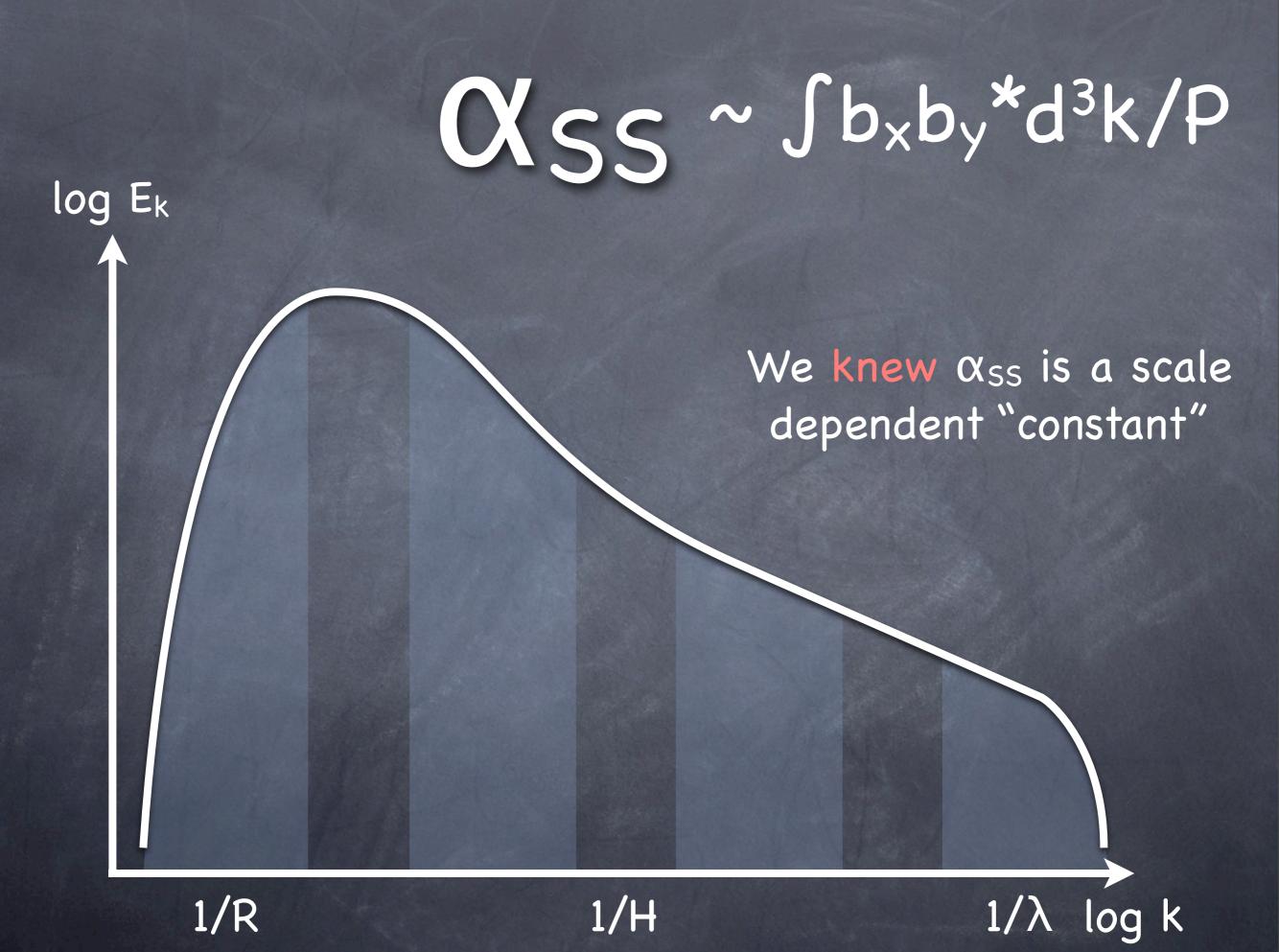


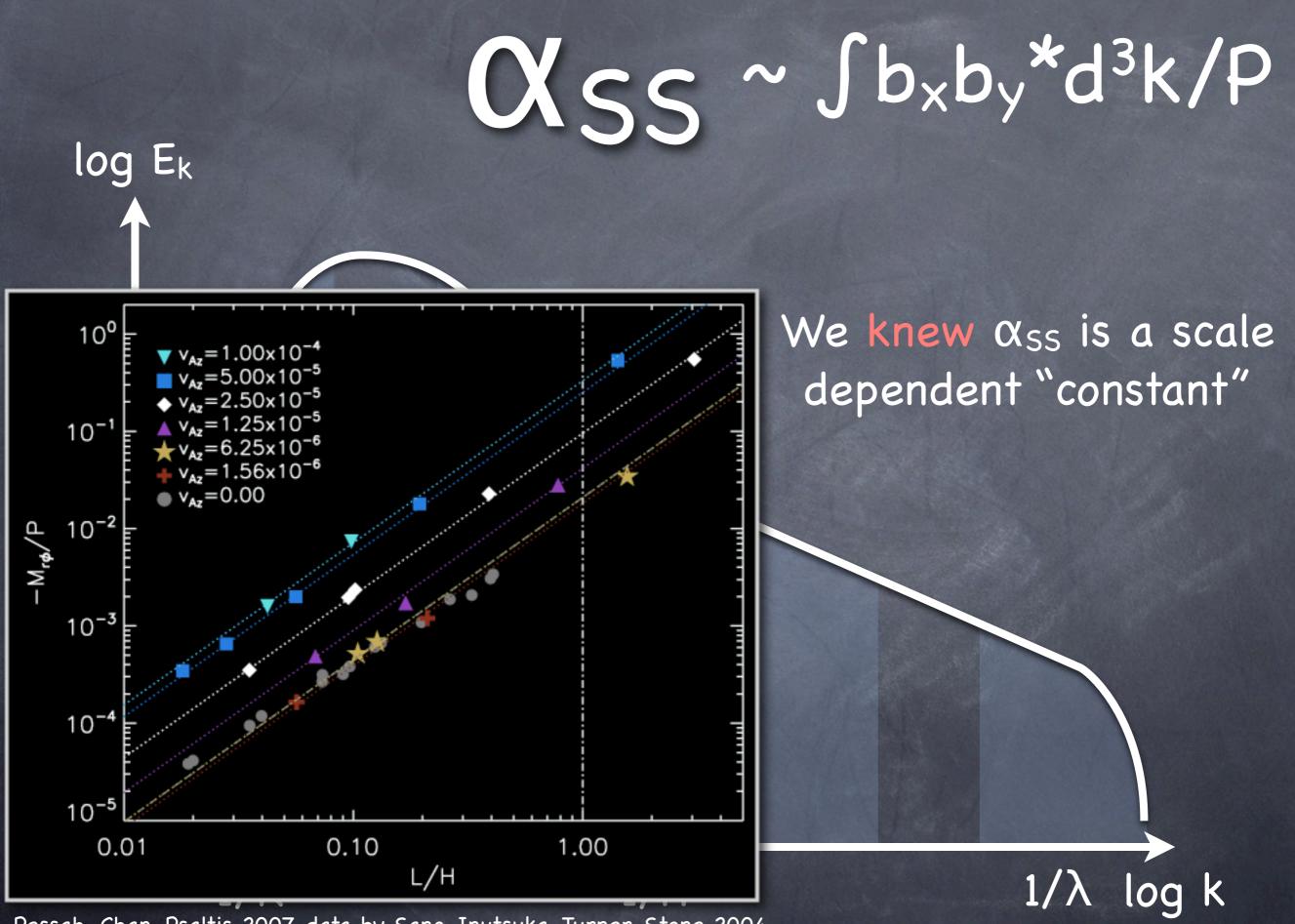
1/λ log k



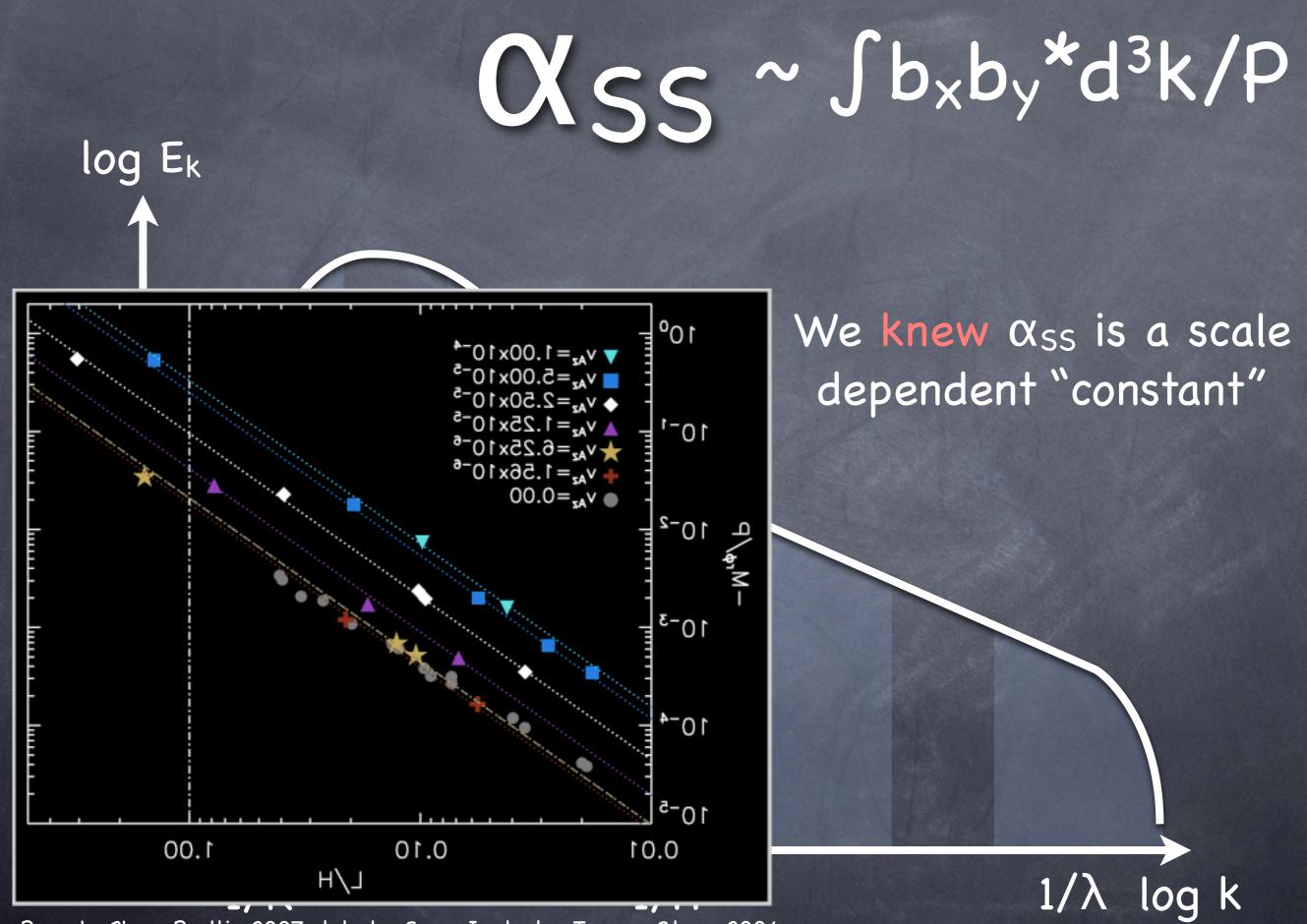








Pessah, Chan, Psaltis 2007, data by Sano, Inutsuka, Turner, Stone 2004



Pessah, Chan, Psaltis 2007, data by Sano, Inutsuka, Turner, Stone 2004

$OOM CASS ~ \int b_x b_y d^3 k/P$

1/H

King, Pringle, Livio 2007: α_{ss} too small

We knew α_{ss} is a scale dependent "constant"

Different meanings at different scales

 $1/\lambda \log k$

1/R

We ARE doing multi-scale studies
We ARE doing consistence check
We ARE NOT taking full advantages of our simulations!

1/H

Small boxes give small α_{ss}

 $1/\lambda$

log k

1/R

Maybe study large scales only? Forget about small scales?

> Old codes evolve thermal energy, turbulent energy disappear to nowhere

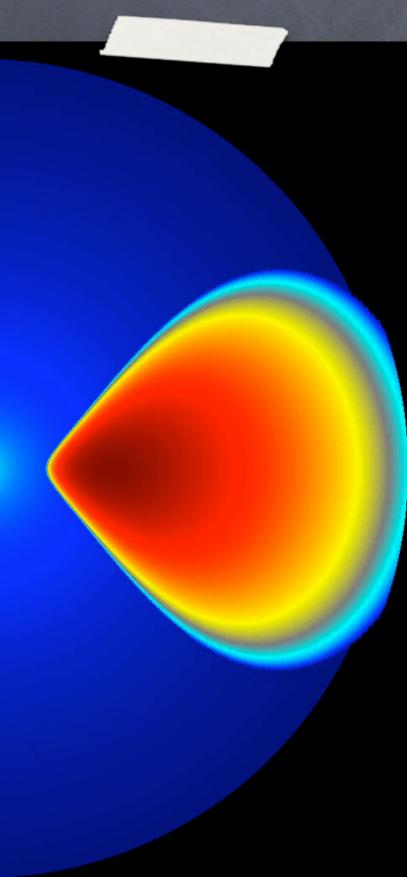
 New codes evolve total energy: on-the-spot approximation

New codes give thicker disks: sub-grid does matter

log k

1/H

1/R



1/R

McKinney & Gammie (2004)

1/H

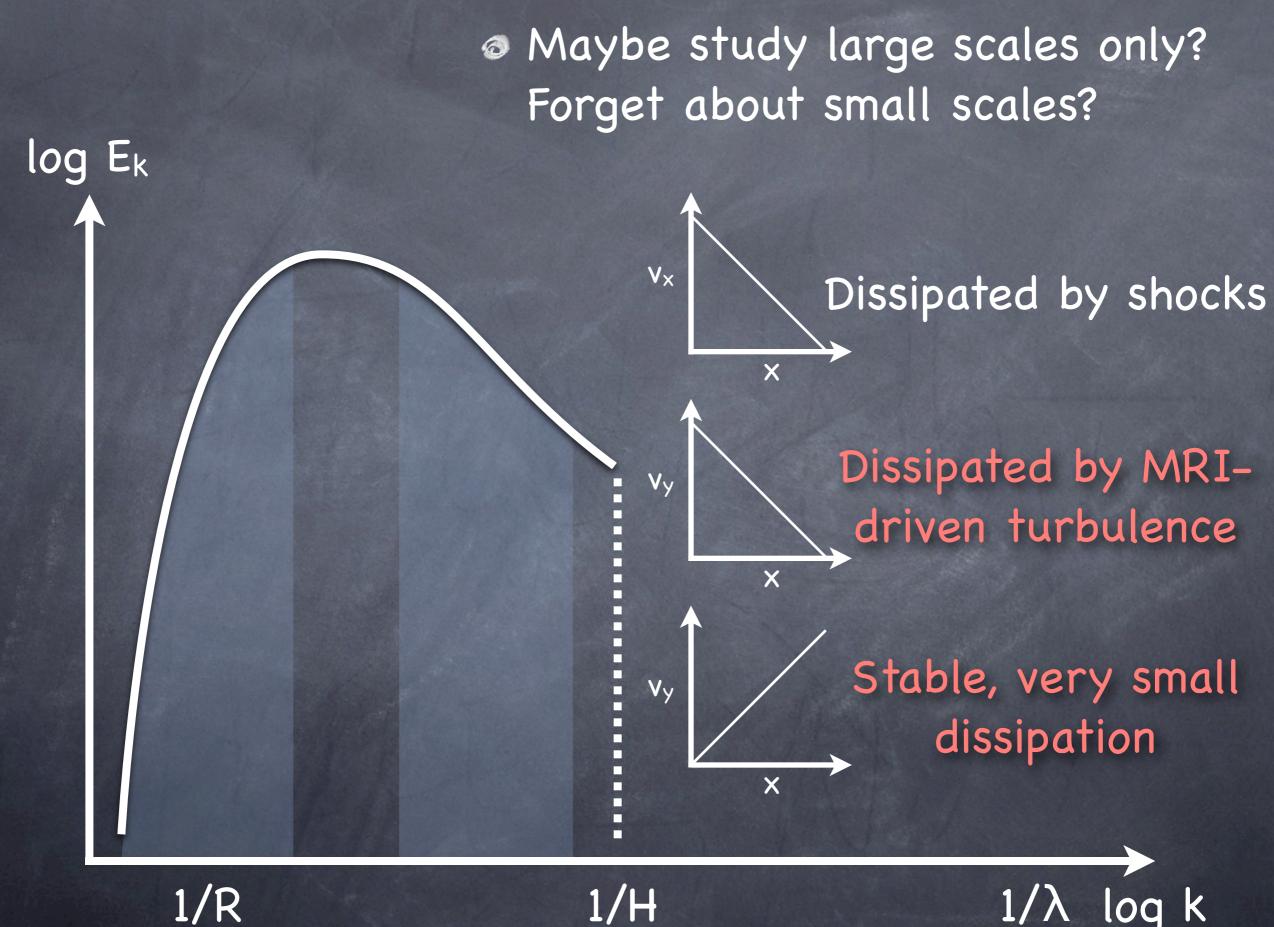
Maybe study large scales only? Forget about small scales?

> Old codes evolve thermal energy, turbulent energy disappear to nowhere

New codes evolve total energy: on-the-spot approximation

New codes give thicker disks: sub-grid does matter

log k



1/R

1/H

Maybe study large scales only?
Forget cool small scales?

Construct sub-grid models to capture important physics: MRI

Sub-Grid Modeling by Mean Field MHD

log k

 $1/\lambda$

1/H

1/R

Sub-grid modeling by mean field MHD: average over MHD equations

Mean turbulent stress: $T_{ij} \equiv R_{ij} - M_{ij} \equiv \langle v'_i v'_j \rangle - \langle b'_i b'_j \rangle$

Mean turbulent EMF: $\mathcal{E}_i \equiv \langle u' \times b' \rangle_i$

 Ideally, measure T_{ij} and E_i from simulations, find transport coefficients, feed them back to simulations!
 Dynamo people Engineers Accretion people care about this care about this care about this

A Model for MRI-Driven Turb.

Use our knowledge of MRI to construct a minimal turbulence model (Pessah, Chan, & Psaltis 2006)

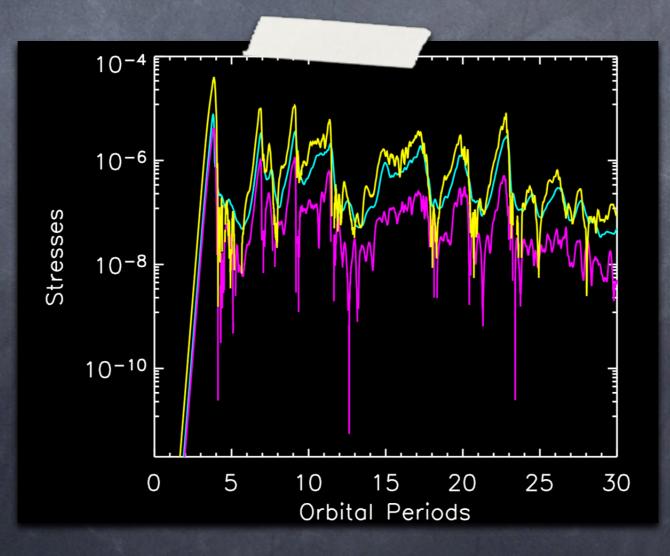
Minimal equations containing MRI

$$\mathbf{\hat{o}}_{+}\begin{bmatrix}\mathbf{v}_{\times}\\\mathbf{v}_{y}\\\mathbf{b}_{\times}\\\mathbf{b}_{y}\end{bmatrix} = \begin{bmatrix}0&2&ik&0\\-(2-q)&0&0&ik\\ik&0&0&0\\0&ik&-q&0\end{bmatrix}\begin{bmatrix}\mathbf{v}_{\times}\\\mathbf{v}_{y}\\\mathbf{b}_{\times}\\\mathbf{b}_{y}\end{bmatrix}$$

Derive dynamic equations for 2nd order correlations

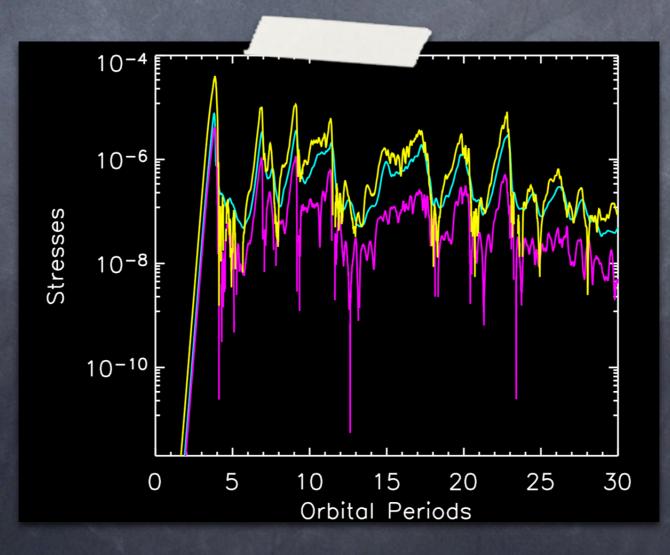
 $\frac{1}{2}\partial_{\dagger} \langle b_{x}b_{x} \rangle = \langle ikb_{x}v_{x} \rangle$ How to model (ikb_xv_x)? $\langle ikb_{x}v_{x}\rangle \equiv iK \langle b_{x}v_{x}\rangle$ Won't work, because (unstable) fluctuations are out of phase, $\langle b_i v_j \rangle$ always small! Define $W_{xy} = - \langle ikb_xv_x \rangle = \langle b_x\omega_y \rangle$ Treat it as new dynamic variable, closure at "second moment" in ik

R_{ij}, M_{ij}, and W_{ij}, 12 dynamic equations, e.g.,
 $\partial_{t}R_{xx} = 4R_{xy} + 2W_{xy}$ $\partial_{t}W_{xy} = 2W_{yy} - K^{2}R_{xx} + K^{2}M_{xx}$ $\partial_{t}M_{xx} = -2W_{xy}$

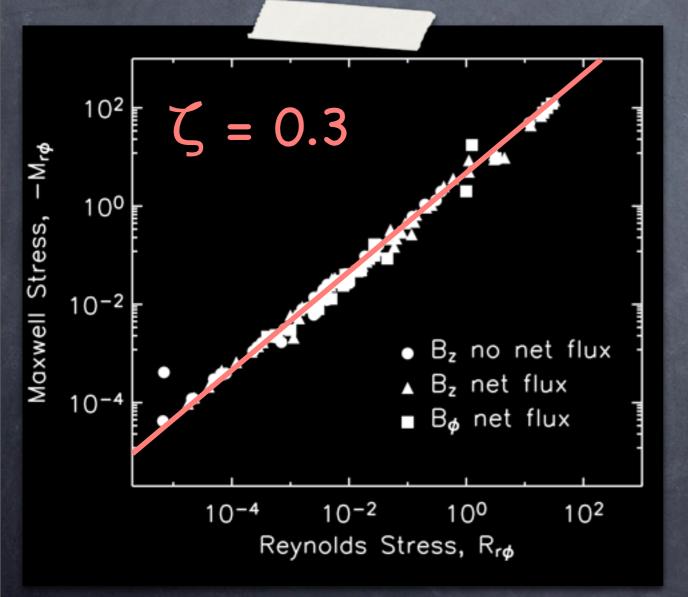


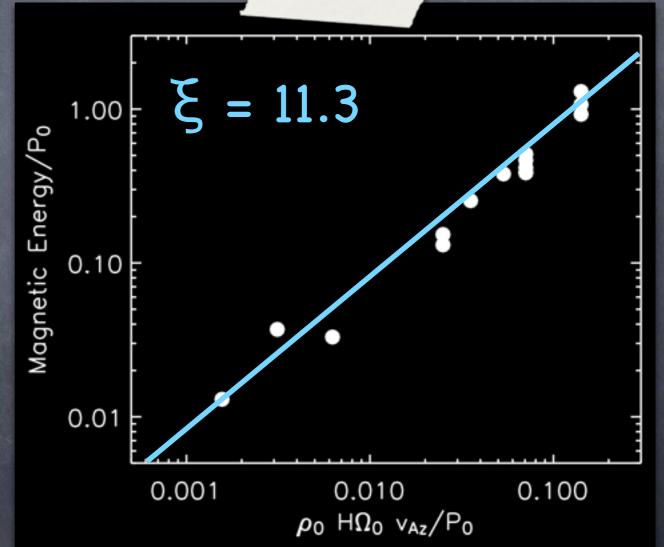
• Very simple nonlinear saturation term $\partial_{t}R_{xx} = 4R_{xy} + 2W_{xy} - \sqrt{M/M_{0}}R_{xx}$ $\partial_{t}W_{xy} = 2W_{yy} - K^{2}R_{xx} + K^{2}M_{xx} - \sqrt{M/M_{0}}W_{xy}$ $\partial_{t}M_{xx} = -2W_{xy} - \sqrt{M/M_{0}}M_{xx}$

 $OM = M_{xx} + M_{yy}, M_0/2 = saturated magnetic energy$



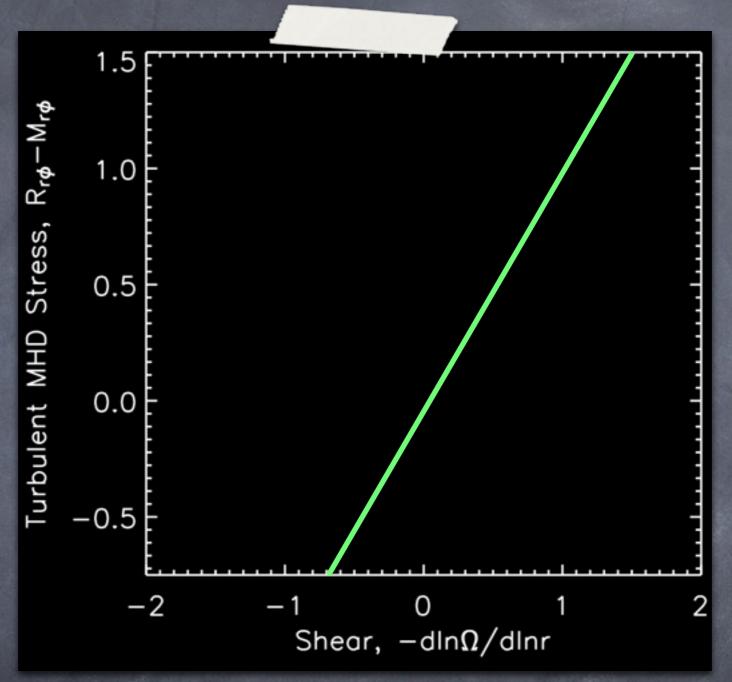
• Two parameters ζ and ξ : • $K = \zeta k_{max}$ • $M_0 = 2\xi \rho_0 H \Omega_0 b_z$



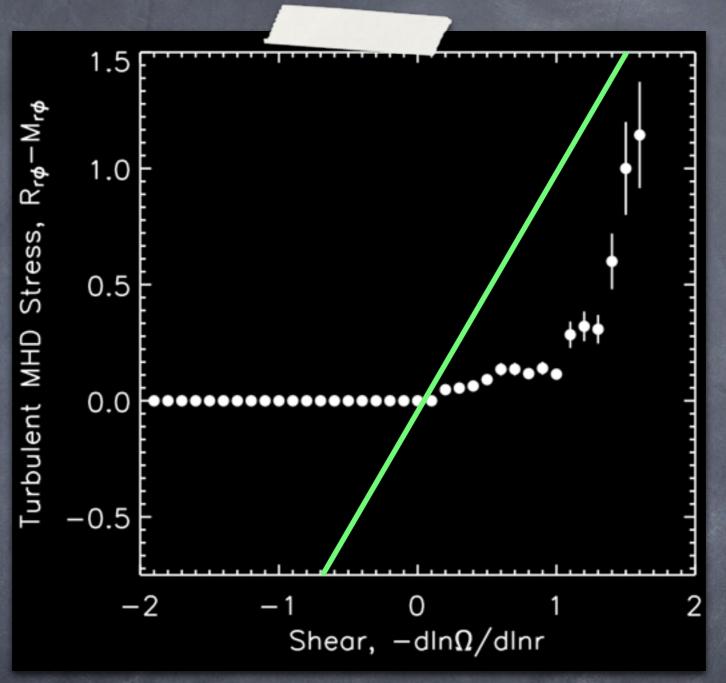


Pessah, Chan, Psaltis 2006b, data from Hawley et al 1995

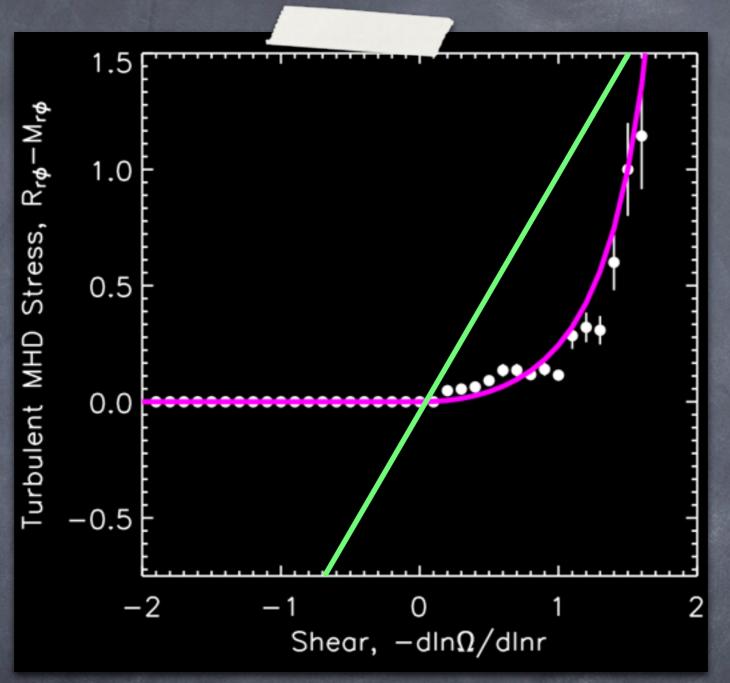
Pessah, Chan, Psaltis 2006a



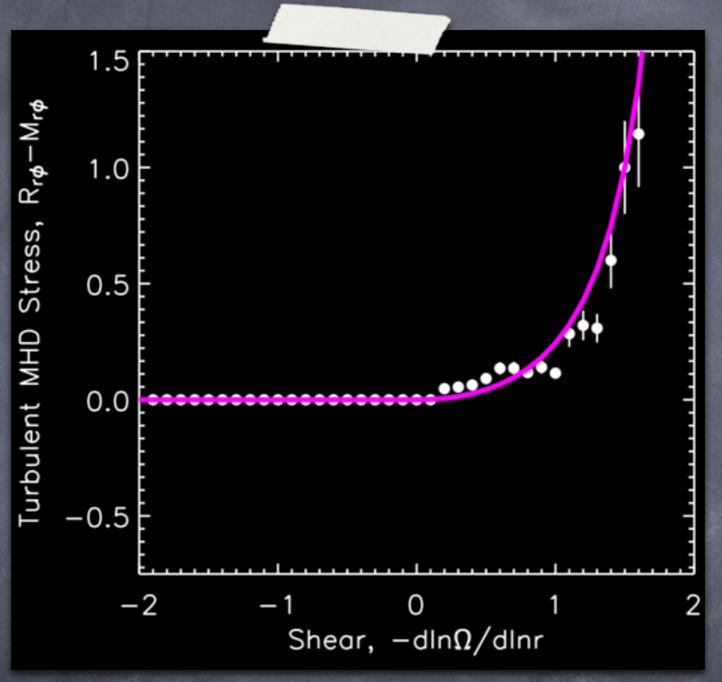
 α_{ss} -model is Newtonian



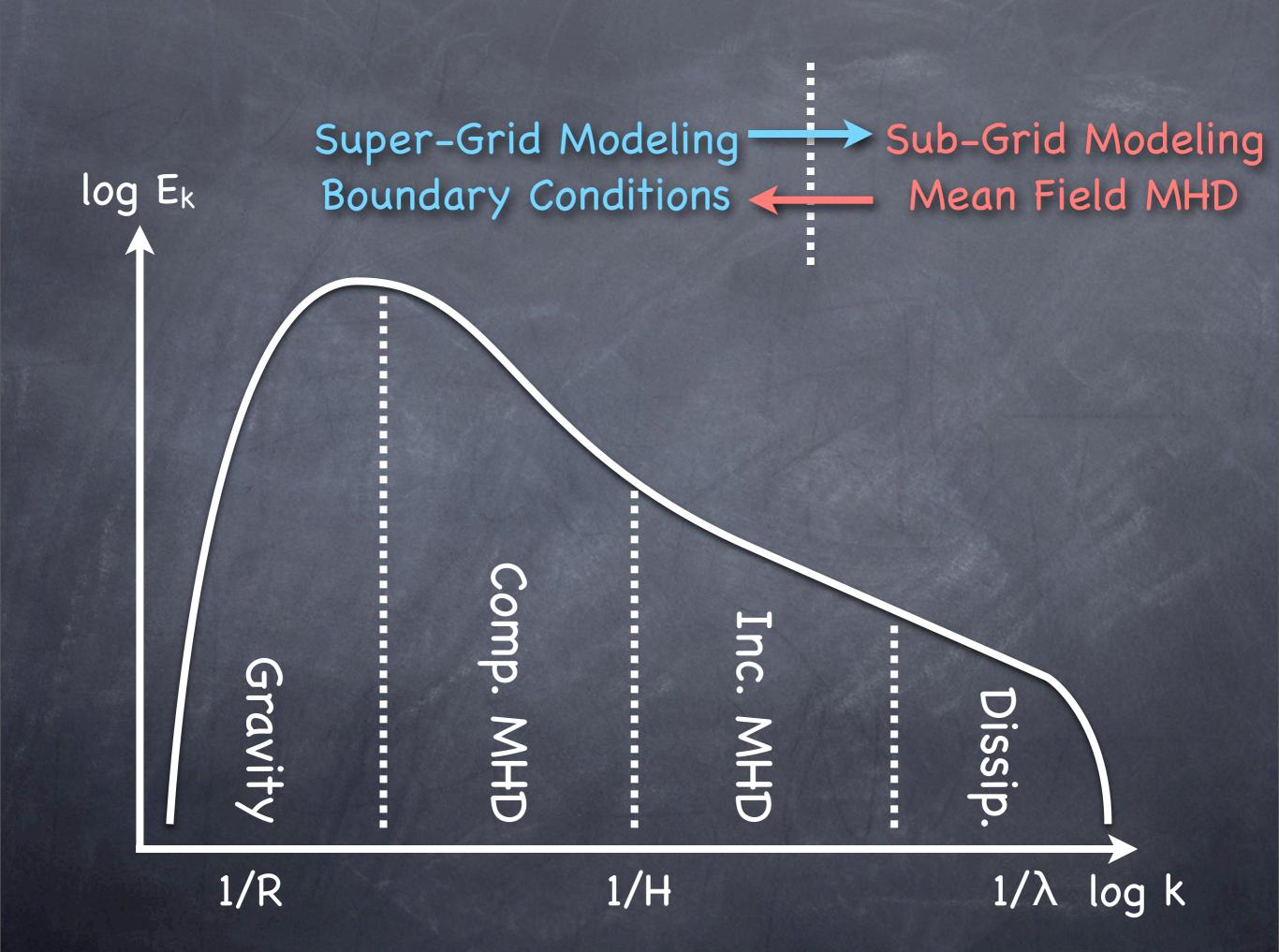
MRI-driven turbulent stress from shearing boxes



Parameters fit by Keperian shearing boxes



A simple turbulence model that can capture MRI



Global simulations tell local simulations how to shear; while local simulations tell global simulations how to transport