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• For convection-driven dynamos in rotating spheres,   
how do characteristic properties (heat flow, velocity, 
magnetic field strength) vary with control parameters?

• Does the dynamo regime change between parameter
values accessible in numerical models and planetary
values ?

• Do planetary dynamos and (some) stellar dynamos
follow the same rules ?

Questions



Diffusive processes, described by the

• kinematic viscosity ν

• thermal diffusivity κ

• magnetic diffusivity η

don‘t play first-order role in planetary dynamos

and

geodynamo models are close to this regime. 

Hypothesis



Outline of dynamo models

• Boussinesq equations
for convection-driven
MHD flow

• Rigid inner and outer
boundary

• ri / ro = 0.35

• Fixed temperature
contrast, no internal
heat sources



Control parameters

• Ekman number E = ν/(ΩD2) 10-6 .... 10-3

• Prandtl number Pr = ν/κ 0.1 .... 10
• Magnetic Prandtl # Pm = ν/η 0.06 .... 20
• Modified Rayleigh # Ra* = αgoΔT/Ω2D 5 .... 200 × Racrit

Modified Rayleigh number is independent of diffusivity.

Ra*  =  Roc
2 (convected Rossby number)



Diagnostic numbers
Use non-dimensional measures for velocity, magnetic field and 
heat transport efficiency that or independent of diffusivities.

• Ro Rossby number Ro =  U/ ΩD
• Lo Lorentz number Lo =  B / (ρμ)1/2ΩD
• Nu*  Modified Nusselt number Nu* = Qadv/(4πroriρcpΔTΩD)

Modified flux Rayleigh number
Ra*Q = Ra*Nu* = Ra E-3 Pr-2  

Ra*Q is a measure for the work by buoyancy forces



Scaling of  Nusselt number

Use of modified „diffusionless“ parameters allows to collapse the data and 
express the dependence by a single power-law.
Compared to non-rotating convection, the exponent is very large (≈ 0.53).

Pm color-coded
Pm>2.5   Pm<0.5



Scaling of  Nusselt number

Rayleigh # based on ΔTFlux Rayleigh #

slope 0.53 slope 1.12



Nusselt number scaling

See Poster by Eric King

~1.1

log Ra

log Nu
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low E

non-rotating

~0.29
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Force balance
Balance in vorticity equation:

∇×(ω×u)     ~     αg ∇×Ter ~      2Ω ∂u/∂z
(1) Assume mixing length ℓ=L, balance inertia ~ buoyancy

U2/ℓ2 ~  αgδT/ℓ q = ρcp UrδT       (q: advected heat flux)

U  ~ [ q ℓ / ρ HT] 1/3 or Ro ~  RaQ*1/3

(2) Triple force balance, determine ℓ from Coriolis ~ Inertia

U2/ℓ2 ~ ΩU/L     ⇒ ℓ ~ (UL/Ω)1/2          (L: „global“ length scale)

U  ~ (q / [ρHT])2/5 (L/Ω)1/5     or Ro ~ RaQ*2/5

(with density stratification, L = Hρ , else L = shell thickness)



Velocity Scaling

Ro ~  Ra*Q
0.41

Agrees well with prediction
from triple force balance

Small effect of Pm

1/3



What controls the strength of the
magnetic field?

Paradigm:
Magnetostrophic balance
Elsasser number

Λ = B2/(μηρΩ)    ~  O(1).

In the numerical models, the 
Elsasser number varies in the 
range 0.06 – 100.

Either force balance not 
magnetostrophic, or Λ not a good 
measure for magnetostrophy.

Alternative: Field strength  
controlled by available power ?

Λ



Power-limited magnetic field strength
Work done by buoyancy:    P ~ ρgαUrδT  ~  q / HT

Ohmic dissipation:  Dohm = fohm P

Dissipation time:   τohm = Emag/Dohm ~ τηRm-1 ~ L/U

B2/2μo = fohm P τohm ~ fohm (q/HT) (L/U)  

(1) Mixing length theory (U ~ q1/3):  

B2/2μo ~ fohm ρ1/3 (qL/HT)2/3

(2) Triple force balance (U ~ q2/5):

B2/2μo ~ fohm ρ2/5 (q/HT)3/5 L4/5 Ω1/5

Non-dimensional:   Lo/fohm
1/2 ~ RaQ*1/3 or RaQ*3/10



Magnetic Field Scaling
Lo ~  Ra*Q

1/3

( B ~  heat flux1/3 and 
independent of rotation)

Fit is marginal for 3/10 
exponent.

Problem: 1/3-scaling for
B should go along with
1/3-scaling for U

3/10



Comparison with Earth
Assume for Earth‘s core:
fohm ≈ 1
Brms ≈ 1 – 3 mT
Q ≈ 2 – 8 TW 
(effective value:  superadia-
batic heat flux plus effect of 
compositional convection)

Geodynamo fits on 
correlation line



Energy partitioning

Emag / Ekin = Lo2/Ro2

~ 1.5  RaQ* -2/15

~  Roc
-3/5

Earth‘s core:
RaQ* ≈ 10-13

⇒
Emag/Ekin ≈ 100 QRole of magnetic Prandtl # ?

Pm color-coded
Pm>2.5   Pm<0.5
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Field topology

Dipolar Multipolar

Ra*=0.12  E=10-5 Pm=0.8 Ra*=0.17  E=10-5 Pm=0.5

Scaling laws so far restricted to dipolar dynamos



Role of rotation
Inertial vs. Coriolis force: 

Rossby number Roℓ
calculated with mean
length scale ℓ in the
kinetic energy spectrum

Roℓ = U/Ωℓ

Regime boundary at  Roℓ
≈ 0.12 (depends on 
heating mode, b.c.)

Pm color-coded Pm>2.5   Pm<0.5
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Roℓ vs. control parameters
Fit involves all four
control parameters

Roℓ ~

RaQ*1/2 E-1/3 Pm-1/5 Pr1/5

Wild extrapolation to 
obtain Earth value:

Roℓ ≈ 0.1



Dipole moment scaling

Earth predicted to lie close to transition dipolar - multipolar



Same scaling of B for stars ?

Problems with sun:
• Tachocline may lead to fundamentally

different dynamo
• Large field scales (dipole) not dominant
• Rotation plays lesser role than in planets

What about fully convective (low mass) and 
rapidly rotating stars ?



Surface field vs. rotation

Increase with rotation rate
Saturation at threshold

Pizzolato et al. (2003)



V374 Peg

V374 Peg   (Donati et al. 2006)

• M ≈ 0.28 M☺

• Trot = 0.44 days

Zeeman-Doppler imaging

• Dipolar field
• ≈ 0.1 T  ( 1 kG )
• Little diff. rotation



Scaling B for planets and stars
• Theoretical result with U ~ q1/3 scaling:

B2/2μo = c fohm ρ1/3 (qL/HT)2/3

• Determine constant c=0.63 from geodynamo models,            
where L=D, ρ = const and HT

-1 ~ r.

• Density stratification:  assume L(r) = min(Hρ,D) 

• Stellar model:     ρ(r), qbol(r), qrad(r), HT(r), Hρ(r)

• Take volume average (qo is bolometric surface flux):

< B2 > / 2μo =   c F fohm <ρ>1/3 qo
2/3

• Radial dependencies condensed into efficiency factor F



F - factors

• Earth‘s core F ≈ 0.6
• Jupiter  F ≈ 1.0
• 0.25 M☺ star F ≈ 1.3

Ratio internal vs surface field
From numerical models with a dipolar field:

• <B2>int ~    (2.5 – 5)   x   <B2> surf

• <B2>int ~    (4 – 10)    x   <B2>dipole



From planets to stars
V374 Peg (dipole
field) + 13 rapidly
rotating M-stars from
Reiners & Basri
(2006) with mean flux
determined from FeH-
line spectroscopy

Planets and rapidly
rotating low-mass
stars seem to follow
the same scaling law



Conclusions
• „Diffusionless“ scaling in terms of Ra* explains properties

of dipole-dominated numerical dynamos within the
accessible range of control parameters

• In dipole-dominant dynamos (rapid rotation), magnetic field
strength is controlled by the available power and is
independent of rotation

• For slow rotation (Rolocal > 0.1) the field is weaker and 
multipolar  

• The predictions of the scaling law for B agrees with Earth‘s
and Jupiter‘s field strength and with assumptions how to 
generalize it for strong density stratification also with the
field strength of rapidly rotating low-mass stars
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