Computation of the mean reversal rate of geodynamo models

Peter Hoyng

SRON Laboratory
for Space Research
Utrecht

$F=-\partial U / \partial x+$ Brownian force

History

Kramers' escape problem (1940)
Dissociation of molecule in two parts

$$
T_{\text {esc }} \sim T_{\text {osc }} \exp (\Delta U / k T)
$$

Mean reversal rate problem: bistable, and no thermal kicks
[Hoyng et al. (GAFD 942001 (reversals of mean field)
Hoyng \& Duistermaat (HD model) (EPL 68 2004; dipole +2 overtones)]

Mean reversal rate: setup

$$
\begin{aligned}
& \partial B / \partial t=\nabla \times[U \times B-\eta \nabla \times B] \\
& U=v+u(t) \\
& B=\Sigma_{k} a^{k}(t) b^{k}(r)
\end{aligned} \quad B \text { is decomposed in set of base functions } b^{k} \text { (given) } u(t)=\text { convection } \quad l y
$$

$$
\begin{aligned}
& \partial_{t} a^{i}=\left[R^{i k}+V^{i k}(t)\right] a^{k} \\
& R^{i k}=\int V \hat{j}^{i} \cdot(v-\eta \nabla) \times b^{k} d^{3} r \\
& V^{i k}(t)=-\int_{V} u(t) \cdot \hat{j}^{i} \times b^{k} d^{3} r
\end{aligned}
$$

- choice of b^{k} and adjoins \hat{b}^{k} : eigenfunction of $R: R^{i k}=\lambda^{k} \delta^{i k}$
- physics in terms of interaction of global modes
- reversal $=$ sign flip of $a^{0}(t)$

HD model

nonlinearity by hand
$\mathrm{V}^{\text {ik }}(\mathrm{t})$ uncorrelated \& equal r.m.s. magnitude $\downarrow \quad \downarrow \quad \downarrow$
$\partial_{t} x=\left(1-x^{2}\right) x+V^{00} x+V^{01} y+V^{02} z$
$\partial_{t} y=-a y-c z+V^{10} x+V^{11} y+V^{12} z$
$\partial_{t} z=c y-a z+V^{20} x+V^{21} y+V^{22} z$

1 complex overtone
[must be removed for geodynamo model]

3D escape problem
$\dot{x}=[\cdots] x \rightarrow \partial_{t} \log x=\cdots \quad \rightarrow$ no reversals
$x \downarrow$ slowly $\rightarrow y, z(:) x \rightarrow \dot{x}(:) x \rightarrow$ no reversals
$x \downarrow$ fast $\rightarrow \dot{x} \approx V^{01} y+V^{02} z \quad \rightarrow$ reversal possible duration reversal \sim decay time first overtone
holds for any dynamo model

Computation mean reversal time in HD model

$P(x, y, z, t)=$ probability distribution
$T(x, y, z)=$ mean time to reach separatrix starting in x, y, z
$\dot{x}=\cdot \cdot ; \dot{y}=\cdot \cdot ; \dot{z}=\cdot \cdot \quad \rightarrow \quad$ Fokker-Planck Eq. for $P(x, r, t):$

$$
\begin{array}{r}
\frac{\partial P}{\partial t}=\left[-\frac{\partial}{\partial x}\left(1-x^{2}\right) x+\frac{a}{r} \frac{\partial}{\partial r} r^{2}+\frac{1}{2} D\left(x^{2}+r^{2}\right)\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r}\right)\right] P \\
r=\left(y^{2}+z^{2}\right)^{1 / 2} ; \quad D=\left\langle\left(V^{i j}\right)^{2}\right\rangle \tau_{C}
\end{array}
$$

$$
\partial_{t} \mathrm{P}=\mathrm{MP} \rightarrow \mathrm{M}^{\dagger} \mathrm{T}=-1
$$

Mean time between reversals $\mathrm{T}_{\text {rev }}=2 \mathrm{~T}(1,0)$
Symmetries in the problem allow finding approximate value $\mathrm{T}_{\text {rev }}$ Geodynamo: many overtones, nonzero cross correlations between V^{ij} (symmetries are gone). Need alternative approach: reduce to 1D problem by projecting out the overtones

Generalisation to many overtones + correlations

$$
\left\lvert\, \begin{array}{ll}
\dot{a}=\left(1-a^{2}\right) a+v^{00} a+\Sigma_{k \geq 1} v^{0 k} a^{k} \quad\left(a=a^{0}\right) & \begin{array}{l}
\text { variability dipole } \\
\text { between reversals }
\end{array} \\
\dot{a}^{i}=\lambda^{i} a^{i}+v^{i 0} a+\Sigma_{k \geq 1} v^{i k} a^{k} & \text { reversals }
\end{array}\right.
$$

- Take $\left\langle\mathrm{V}^{\mathrm{in}}(\mathrm{t}) \mathrm{V}^{\mathrm{jm}}(\mathrm{t}-\mathrm{s})\right\rangle=\mathrm{D} \delta^{\mathrm{ij}} \delta^{\mathrm{nm}} \delta(\mathrm{s}) \quad$ [correlations: $\left.\mathrm{D} \rightarrow \mathrm{D}^{\mathrm{ijnm}}\right]$
- $\partial_{t} P=M P \rightarrow$ integrate over $a^{1}, a^{2}, . . \rightarrow$ equation for $p(a)$ only:

$$
\partial_{t} p=-\frac{\partial}{\partial a}\left(1-a^{2}\right) a p+\frac{1}{2} D \frac{\partial^{2}}{\partial a^{2}}\left(a^{2}+\left\langle r^{2}\right\rangle\right) p \quad r^{2}=\Sigma_{k \geq 1}\left(a^{k}\right)^{2}
$$

$-\partial_{t} p=M p \rightarrow M^{\dagger} T=-1$ is ODE for $T:$
$\left(1-a^{2}\right) a \frac{d T}{d a}+\frac{1}{2} D\left(a^{2}+\left\langle r^{2}\right\rangle\right) \frac{d^{2} T}{d a^{2}}+1=0 \quad \begin{aligned} & \text { find }\left\langle r^{2}\right\rangle \text { near } a=0 \text { by } \\ & \text { ignoring mixing term }\end{aligned}$

Numerical results

9 overtones no correlations between $\mathrm{V}^{i j}(\mathrm{t})$
$\mathrm{T}_{\text {rev }}=146$ (theor), meas: 194 ± 27
(usually agreement to within 10-40\%)
$\mathrm{T}_{\mathrm{rev}} \sim \exp (\mathrm{K} / \mathrm{D})$ K function of $D \&\left\{\lambda^{k}\right\}$
meas: 194 ± 27
(usually agreement

What causes

a reversal?

$\dot{a}=\left(1-a^{2}\right) a+v^{00} a+\Sigma_{k \geq 1} v^{0 k} a^{k}$
$a^{i}=\lambda^{i} a^{i}+v^{i 0} a$
($\mathrm{a}=\mathrm{a}^{0}$; mixing term ignored)

Three-step process:

1. jump in one or more $\mathrm{V}^{\mathrm{i}}(\mathrm{t})$ makes corresponding a^{i} temporarily large;
2. jump in $V^{00}(\mathrm{t})$ makes the dipole amplitude $\mathrm{a}(\mathrm{t})$ collapse;
3. $\mathrm{V}^{0 \mathrm{k}}(\mathrm{t}) \mathrm{a}^{\mathrm{k}}$ pushes $\mathrm{a}(\mathrm{t})$ to the other basin of attraction.

Step 1 and 2 need to be cotemporal within overtone decay time \rightarrow explains why reversals are rare, despite large fluctuations in a(t)

In a numerical model the jumps may be connected to properties of u(t) via

$$
v^{i k}(t)=-\int v u(t) \cdot \hat{j}^{i} \times b^{k} d^{3} r
$$

Implementation

Collaboration with Dieter Schmitt, Martin Schrinner, Johannes Wicht MPS / Lindau

Numerical model
Velocity averages $U=v+u(t)$
Find eigenmodes $b^{n}(r)$, adjoints $\hat{b}^{n}(r)$ \& eigenvalues λ^{n} of R
Compute $V^{i k}(t)=-\int v u(t) \cdot \hat{j}^{i} \times b^{k} d^{3} r$
Compute $\left.\int_{0}^{\infty}<V^{i j}(\mathrm{t}) \mathrm{V}^{\mathrm{kl}}(\mathrm{t}-\tau)\right\rangle \mathrm{d} \tau$
Compute D and $\left\langle\mathrm{r}^{2}\right\rangle \rightarrow \mathrm{p}(\mathrm{a})$ and $\mathrm{T}_{\text {rev }}$

Discussion

Numerical tests of theory extended HD model encouraging
But: quenching of fundamental mode and diffusion coefficients

