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MHD Turbulence in discs

2

The magnetorotational instability (MRI) 
provides an efficient source of turbulence in 
accretion discs.

 Leads to a “strong” turbulent transport of 
angular momentum

Hawley & Balbus (2002)
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MHD Turbulence in discs

2

The magnetorotational instability (MRI) 
provides an efficient source of turbulence in 
accretion discs.

 Leads to a “strong” turbulent transport of 
angular momentum

Hawley & Balbus (2002)However

MHD turbulence can also be a source of large scale magnetic fields 
(numerous examples in this conference)

 Useful to understand disc winds & jets collimation

 Useful for star-disc interaction

Can we find & describe a “disc dynamo” ?
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Local model & Numerical method

3

∂tu + Sy∂xu + u ·∇u = −∇ψ − 2Ωuxey + (2Ω− S)uyex

+B ·∇B + ν∆u
∂tB + Sy∂xB = SByex +∇× (u×B) + η∆B

∇ · u = 0
∇ · B = 0

Rotating sheared flow

Incompressible approximation

Periodic (Φ,z) and shear-periodic (r) boundary conditions

 Numerics: 3D Spectral (Fourier) method with remap (e.g. Umurhan 
& Regev 2004)

Local model (shearing box)
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Zero mean field boxes: open questions

4

Formally no linear instability  for the 
case without a mean field

How turbulence is maintained ?

How do we explain/extend the 
Pm dependancy ?

Fromang et al. (2007)

1130 S. Fromang et al.: MHD turbulence in accretion disks. II.
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Fig. 11. Summary of the state (turbulent or not) of the flow in an (Re,Pm) plane (left panel) and in an (Re,ReM) plane (right panel) for the
models presented in this paper. In the later, the dashed line represents the Pm = 1 case. On both panels, “YES” means that a non vanishing
transport coefficient α was measure while “NO” means that MHD turbulence eventually decays: α = 0. All cases use a resolution (Nx,Ny, Nz) =
(128, 200, 128), except the models appearing in a solid squared box, for which the resolution was doubled. The model appearing in a dashed line
squared box corresponds to the marginal model described in Fig. 7.

Fig. 12. Snapshots of By in the (x, z) plane at time t = 66 in
model 256Re12500Pm2. The structure of the flow and the typical length
scale of the fluctuations are similar to that obtained in model STD128 in
Paper I (see the middle panel of Fig. 4 in Paper I with which the present
figure should be compared).

Paper I, we found a time averaged value Ly(By) = 0.045, very
close to the value 0.04 we obtained for model STD128.

It is also possible to compare the results of model STD64
of Paper I to the results of the present paper. We recall here
that we found the rate of angular momentum transfer in this
model to be such that α ∼ 0.004 when time averaged over
the simulation. For model STD64, we estimated in Paper I that
ReM ∼ 104 and a similar value for the magnetic Prandtl num-
ber as for model STD128. This would correspond to Reynolds
number somewhat smaller than 10 000. In the present paper,
we found that α ∼ 0.01 for model 128Re3125Pm4, for which
Re = 3125 and Pm = 4, while model 128Re3125Pm2, hav-
ing Re = 3125 and Pm = 2 was shown to decay. It is there-
fore tempting to identify model STD64 with a model that would
be intermediate between the last two cases. Using the PENCIL
code, we ran such a model, having Re = 3125 and Pm = 3, and
found α = 0.007 which is close to the result of model STD64.

We want to stress, however, that it would be dangerous to
push such comparisons further than that. Indeed, we demon-
strated in Paper I that numerical dissipation generally departs
from a pure Laplacian dissipation in ZEUS. Moreover, we
stressed in Paper I that an accurate estimate for the magnetic
Prandtl number is difficult to obtain for a given simulation, as it
depends on the nature of the flow itself. A one to one compari-
son between the results of Papers I and II is therefore difficult to
carry and may not bear much significance.

5.2. Small scales

The results of this paper together with Paper I indicate the impor-
tance of flow phenomena occurring at the smallest scales avail-
able in a simulation, at least at currently feasible resolutions. In
fact the importance of small scales determined by the transport
coefficients is not unexpected when one considers previous work
on the maintenance of a kinematic magnetic dynamo.

Although a kinematic dynamo considers only the induction
equation with an imposed velocity field, some issues arising in
that case may be relevant, especially if one wishes to consider
the likely behaviour of turbulence driven by the MRI when the
transport coefficients are reduced to very small values.

If a dynamo is to be maintained in a domain such as a shear-
ing box with no net flux, one would expect that the magnitude of
a magnetic field could be amplified from a small value through
the action of some realised velocity field. Furthermore if such an
amplification occurs within a specified time scale and for arbi-
trarily small resistivity, it would be classified as a fast dynamo.
In the special case when the imposed velocity field is stationary
Moffatt & Proctor (1985) have shown that the field produced by
such a dynamo must have a small spatial scale determined by
the resistivity. A well known example of this type is generated
by the so called “ABC” flow (see Teyssier et al. 2006, and ref-
erences therein). This example also shows that certain quantities
such has the growth rate of the dynamo do not have a simple de-
pendence on magnetic Reynolds number when that is relatively
small and thus caution should be exercised in making any simple
extrapolation.

Although the case of a steady state velocity field is rather
special, the result can be very easily seen to hold more generally
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Zero mean field boxes: open questions

4

Formally no linear instability  for the 
case without a mean field

How turbulence is maintained ?

How do we explain/extend the 
Pm dependancy ?

Velocity field Magnetic field

“MRI type” instability

“Dynamo”

Fromang et al. (2007)
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Fig. 12. Snapshots of By in the (x, z) plane at time t = 66 in
model 256Re12500Pm2. The structure of the flow and the typical length
scale of the fluctuations are similar to that obtained in model STD128 in
Paper I (see the middle panel of Fig. 4 in Paper I with which the present
figure should be compared).

Paper I, we found a time averaged value Ly(By) = 0.045, very
close to the value 0.04 we obtained for model STD128.

It is also possible to compare the results of model STD64
of Paper I to the results of the present paper. We recall here
that we found the rate of angular momentum transfer in this
model to be such that α ∼ 0.004 when time averaged over
the simulation. For model STD64, we estimated in Paper I that
ReM ∼ 104 and a similar value for the magnetic Prandtl num-
ber as for model STD128. This would correspond to Reynolds
number somewhat smaller than 10 000. In the present paper,
we found that α ∼ 0.01 for model 128Re3125Pm4, for which
Re = 3125 and Pm = 4, while model 128Re3125Pm2, hav-
ing Re = 3125 and Pm = 2 was shown to decay. It is there-
fore tempting to identify model STD64 with a model that would
be intermediate between the last two cases. Using the PENCIL
code, we ran such a model, having Re = 3125 and Pm = 3, and
found α = 0.007 which is close to the result of model STD64.

We want to stress, however, that it would be dangerous to
push such comparisons further than that. Indeed, we demon-
strated in Paper I that numerical dissipation generally departs
from a pure Laplacian dissipation in ZEUS. Moreover, we
stressed in Paper I that an accurate estimate for the magnetic
Prandtl number is difficult to obtain for a given simulation, as it
depends on the nature of the flow itself. A one to one compari-
son between the results of Papers I and II is therefore difficult to
carry and may not bear much significance.

5.2. Small scales

The results of this paper together with Paper I indicate the impor-
tance of flow phenomena occurring at the smallest scales avail-
able in a simulation, at least at currently feasible resolutions. In
fact the importance of small scales determined by the transport
coefficients is not unexpected when one considers previous work
on the maintenance of a kinematic magnetic dynamo.

Although a kinematic dynamo considers only the induction
equation with an imposed velocity field, some issues arising in
that case may be relevant, especially if one wishes to consider
the likely behaviour of turbulence driven by the MRI when the
transport coefficients are reduced to very small values.

If a dynamo is to be maintained in a domain such as a shear-
ing box with no net flux, one would expect that the magnitude of
a magnetic field could be amplified from a small value through
the action of some realised velocity field. Furthermore if such an
amplification occurs within a specified time scale and for arbi-
trarily small resistivity, it would be classified as a fast dynamo.
In the special case when the imposed velocity field is stationary
Moffatt & Proctor (1985) have shown that the field produced by
such a dynamo must have a small spatial scale determined by
the resistivity. A well known example of this type is generated
by the so called “ABC” flow (see Teyssier et al. 2006, and ref-
erences therein). This example also shows that certain quantities
such has the growth rate of the dynamo do not have a simple de-
pendence on magnetic Reynolds number when that is relatively
small and thus caution should be exercised in making any simple
extrapolation.

Although the case of a steady state velocity field is rather
special, the result can be very easily seen to hold more generally

Phenomenological picture:
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The quest for a non linear mechanism

5

Non linear steady solution (Rincon et al. 2007) in Couette flows (no 
slip, perfectly conducting walls in the y=r direction)

As shown in Fig. 7, this nonlinear steady solution can be
continued to large Rm but exists only in a narrow range of
Re. The reason for this could be that only at low Re do
marginally unstable MRI modes of the toroidal magnetic
field originate from a steady bifurcation. At larger Re,
marginal MRI modes systematically arise from a Hopf
bifurcation instead: pairs of steady eigenvalues corre-
sponding to modes with the same symmetry collide and
turn into complex-conjugate pairs for increasing Re. To
discover similar dynamo solutions at larger Re, it may
therefore prove necessary to consider time-dependent
MRI modes instead of steady ones. This is unfortunately
numerically far more challenging, since the symmetries
used to reach decent three-dimensional resolutions are
broken when the MRI modes turn into complex-conjugate
pairs.

We have presented an instance of self-sustaining, non-
linear dynamo solution in Keplerian PCF, whose critical
Rm ’ 670 is comparable to that found in zero-net-flux
simulations (another Rm definition is used in [7]).
Preliminary direct spectral numerical simulations seem to
confirm independently the existence of this solution, whose
structure is dominated by a coherent zero-net-flux toroidal
magnetic field. We also discovered a (R, DS) branch,
which makes it probable that many solutions with different
symmetries exist. Such coherent structures are strictly
speaking not turbulence but, like the hydrodynamics SSP,
they probably act as organizing centers of the dynamics in
phase space [10] and could play an important role in

triggering and sustaining MHD turbulence in magnetized
Keplerian disks, where all the basic ingredients of the
dynamo are present. Hopefully, this idealized study will
be helpful to uncover the details of the dynamo in more
realistic setups.

We thank C. Cossu for his contribution to the code and
A. Schekochihin and S. Fromang for fruitful discussions.
We acknowledge support from the Leverhulme Trust and
the Isaac Newton Trust.

*F.Rincon@damtp.cam.ac.uk
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FIG. 7. Continuation with respect to Rm for Re!10, "!;"# !
"0:375; 1#. Inset: continuation with respect to Re for Rm ! 1500
(full line), Rm ! 3000 (dashed line). "Nx; Ny; Nz# ! "8; 24; 32#.

FIG. 6 (color online). Cuts through the unforced (A ! 0) non-
linear steady solution of Fig. 5 (! ! 0:375, black dot). Top: bz at
z ! Lz=2. Bottom: bx (color scale) and (by, bz) (arrows) at x !
Lx=4.

PRL 98, 254502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
22 JUNE 2007

254502-4

Bz plot in the (x,y)
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x

y

y

z



Geoffroy Lesur (Cambridge) KITP Dynamo conference 2008

An azimuthal field cycle in shearing boxes?

6

Zero mean field shearing boxes simulations seem 
to show a strong azimuthal field with a vertical 
structure

Fourier Analysis of                         shows 
regeneration cycles with T~50 S-1
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Behaviour during one cycle

7

Simulation in a “tall” box (Lz=2Lr)
Re=1600, Pm=4 for 50 S-1

3D Plot of BΦ
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Studying one cycle...

8

Budget for a pure exp(ik0z) mode :

with

Involves coupling between 
various other modes

Ê = (û×B)k0

4 G. Lesur and G. I. Ogilvie: On Self-Sustained Dynamo Cycles in Accretion Discs

Fig. 3. Volume rendering of Bx for a simulation with Re = 1600 and Rm = 6400. Left panel: t = 260, corresponding to a cycle maximum.
Right panel: t = 280, corresponding to a cycle minimum. One easily observes the large-scale Bx(z) on the t = 260 snapshot whereas strong
nonaxisymmetric structures destroy the large scale structures at t = 280.

230 240 250 260 270 280 290

!0.04

!0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t

A
m

p
lit

u
d
e

 

 bx

10 x mean shear

10 x emf

10 x resistive term

230 240 250 260 270 280 290
!5

!4

!3

!2

!1

0

1

t

P
h
a
s
e

 

 bx

mean shear

emf

resistive term

Fig. 4. Amplitude projected on B̂x(k0, t) (left) and phase (right) of the terms involved in equation (12). The amplitude clearly shows one cycle
comparable to Fig. 2 for Bx. The cycle behaviour comes mainly from the shear term, whose contribution is initially positive (t < 270) and later
becomes negative (t > 270). EMF and resistive term always make dissipative contributions.

230 240 250 260 270 280 290
!0.01

!0.005

0

0.005

0.01

0.015

0.02

t

A
m

p
lit

u
d
e

 

 

by

10 x emf

10 x resistive term

230 240 250 260 270 280 290
!8

!7

!6

!5

!4

!3

!2

!1

0

t

P
h
a
s
e

 

 

by total

emf

resistive term

Fig. 5. Amplitude projected on B̂y(k0, t) (left) and phase (right) of the terms involved in equation (13). The amplitude of By is approximately 20
times smaller than Bx. The cycle observed for By is related to the oscillation of the EMF Ex which is reversed at t ! 243.

4 G. Lesur and G. I. Ogilvie: On Self-Sustained Dynamo Cycles in Accretion Discs

Fig. 3. Volume rendering of Bx for a simulation with Re = 1600 and Rm = 6400. Left panel: t = 260, corresponding to a cycle maximum.
Right panel: t = 280, corresponding to a cycle minimum. One easily observes the large-scale Bx(z) on the t = 260 snapshot whereas strong
nonaxisymmetric structures destroy the large scale structures at t = 280.

230 240 250 260 270 280 290

!0.04

!0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

t

A
m

p
lit

u
d

e

 

 bx

10 x mean shear

10 x emf

10 x resistive term

230 240 250 260 270 280 290
!5

!4

!3

!2

!1

0

1

t

P
h

a
s
e

 

 bx

mean shear

emf

resistive term

Fig. 4. Amplitude projected on B̂x(k0, t) (left) and phase (right) of the terms involved in equation (12). The amplitude clearly shows one cycle
comparable to Fig. 2 for Bx. The cycle behaviour comes mainly from the shear term, whose contribution is initially positive (t < 270) and later
becomes negative (t > 270). EMF and resistive term always make dissipative contributions.

230 240 250 260 270 280 290
!0.01

!0.005

0

0.005

0.01

0.015

0.02

t

A
m

p
lit

u
d

e

 

 

by

10 x emf

10 x resistive term

230 240 250 260 270 280 290
!8

!7

!6

!5

!4

!3

!2

!1

0

t

P
h

a
s
e

 

 

by total

emf

resistive term

Fig. 5. Amplitude projected on B̂y(k0, t) (left) and phase (right) of the terms involved in equation (13). The amplitude of By is approximately 20
times smaller than Bx. The cycle observed for By is related to the oscillation of the EMF Ex which is reversed at t ! 243.

One Bϕ cycle from a 
numerical simulation

t t

Er acts always as a resistive term

Eϕ is responsible for the cyclic behaviour

∂B̂φ

∂t
= SB̂r − ik0Êr − ηk2

0B̂φ

∂B̂r

∂t
= ik0Êφ − ηk2

0Br
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Non axisymmetric origin of the emfs

9

Which waves contribute to the EMFs?

Contribution of non axisymmetric wave numbers nϕ to Eϕ

4 G. Lesur and G. I. Ogilvie: On Self-Sustained Dynamo Cycles in Accretion Discs
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Br

Eϕ comes from the coupling of the largest non 
axisymmetric modes

Same conclusion for Er (not shown)
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Shearing waves linear response (I)

10
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Shearing waves linear response (I)

10

Let’s consider the linear and non axisymmetric response to a large scale field

B = B0 cos(k0z)eφ
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Shearing waves linear response (I)

10

Let’s consider the linear and non axisymmetric response to a large scale field

The “largest” linear shearing waves are written:

B = B0 cos(k0z)eφ

u = ū(z) exp[i(kφx + kr(t)y)]
b = b̄(z) exp[i(kφx + kr(t)y)]

with
kφ = 2π/Lφ

kr = −Stkφ
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Shearing waves linear response (I)

10

Let’s consider the linear and non axisymmetric response to a large scale field

The “largest” linear shearing waves are written:

The axisymmetric EMF profile associated to one shearing waves is:

B = B0 cos(k0z)eφ

E(z) =
1
2
![ū(z)×b̄∗(z)]

u = ū(z) exp[i(kφx + kr(t)y)]
b = b̄(z) exp[i(kφx + kr(t)y)]

with
kφ = 2π/Lφ

kr = −Stkφ
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Shearing waves linear response (I)

10

Let’s consider the linear and non axisymmetric response to a large scale field

The “largest” linear shearing waves are written:

The axisymmetric EMF profile associated to one shearing waves is:

To quantify the “quasi linear” feedback, we compute the correlations

B = B0 cos(k0z)eφ

E(z) =
1
2
![ū(z)×b̄∗(z)]

Having in mind the large 
scale field equations :

u = ū(z) exp[i(kφx + kr(t)y)]
b = b̄(z) exp[i(kφx + kr(t)y)]

Γφ =
∫

Bφ(−∂zEr) dz

Γr =
∫

Bφ∂zEφ dz

∂tBφ = SBr − ∂zEr

∂tBr = ∂zEφ

with
kφ = 2π/Lφ

kr = −Stkφ
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We assume a “turbulent resistivity” closure model for the emfs, 
following the linear properties of the shearing waves

Lag time tL~S-1

BRev~0.1

∂tBφ(t) = SBr(t)− βk2
0Bφ(t− tL)

∂tBr(t) = γk2
0Bφ(t− tL)

γ = γ0

[
1− |Bφ(t− tL)|

BRev

]

with
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and therefore an increasing positive shear term in (12). On the
contrary, for B0 > 0.08, one expects the shear term to decay and
eventually be reversed. This property is indeed observed in nu-
merical simulations. In particular, the shear term in Fig. 4 starts
to decay for B0 > 0.08 which corresponds to the the predicted
result from the linear analysis.

To check the effect of dissipation processes on this picture,
we plot in Fig. 8 the evolution of the Γ coefficients for Reynolds
and magnetic Reynolds numbers 4 times larger than in the pre-
vious case. One finds essentially the same properties: a system-
atic resistive effect for Γx and a reversal for Γy. Note however
that the reversal appears for a larger B0 in the less diffusive case
(B0 ∼ 0.2). We have also checked that these properties persist
when one changes the magnetic Prandtl number at sufficiently
large Re and Rm. These remarks suggest that the results found in
this linear analysis are not related to a finite resistivity or vis-
cosity property and may therefore appear for arbitrarily large
Reynolds numbers.

4.3. Phenomenological properties

The waves described in this section are clearly inhomogeneous
in the vertical direction. However, we can understand them as
a version of the magnetorotational instability in the presence
of a varying azimuthal field (Balbus & Hawley 1992; Terquem
& Papaloizou 1996). As one would expect, the transport coef-
ficients 〈bxby〉 and 〈vxvy〉 associated with the linear waves are
nonzero, and lead to an outward angular momentum transport
(Fig. 9), as in the classical vertical field calculation (see Pessah
et al. 2008). This demonstrates that these shearing waves actu-
ally extract energy from the mean flow as a classical MRI mode.
Because of the resistive properties of Ey, these waves also ex-
tract some energy from the large-scale azimuthal field, which
is generated through shearing of the radial field. Therefore, the
energy of the waves comes primarily from the mean shear, as
expected. Moreover, it is known that the azimuthal MRI has an
optimum growth rate for a given azimuthal wavelength kx and
field strength Bx. In the high-kz limit with a uniformB = B0ex,
this maximum growth rate is reached when kxB0 =

√
5/12 S

(Ogilvie & Pringle 1996). Using our parameters, this leads to
B0 ∼ 0.2S Lz, which is surprisingly close to the magnetic field
amplitude for which Γx is reversed at large Re. Although this
argument is by no mean comprehensive, it draws attention to
the close relation between the transient amplification observed
in our analysis and the (ideal) MRI waves studied by Balbus &
Hawley (1992). Naturally, these conjectures need to be checked
more carefully using a proper analytical analysis, which will be
the subject of another paper.

5. A toy model

In this section, we provide a toy model reproducing the basic lin-
ear properties exhibited in the previous section. This toy model
does not pretend to be an accurate set of closure relations for
equations (12)–(13) but it includes the main physical ingredients
required to reproduce qualitatively the cycle behaviour described
in section 3. We therefore rewrite equations (12)–(13) as:

∂t B̂x(k0, t) = S B̂y(k0, t) − βB̂x(k0, t − tr), (28)

∂t B̂y(k0, t) = γB̂x(k0, t − tr)
Br − |B̂x(k0, t − tr)|

Br
, (29)

where γ, β and Br are constants. In this set of equations, we have
neglected the physical dissipation processes, as they are very
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Fig. 10. Numerical solution of the toy model (equations 28–29) with
γ = 0.007, β = 0.010, tr = 2 S

−1 and Br = 0.08, exhibiting sustained
magnetic field oscillations. The time between two Bx reversals is about
∼ 50 S −1 as in the full simulations. This toy model reproduces qualita-
tively the results of our numerical simulations.

small in the budget of the simulations (see Figs 4–5). We have
assumed a resistive term for Ey, as expected from the linear anal-
ysis. However, to take into account the fact that the EMF is due
to a progressively amplified shearing wave, we assume the EMF
is slightly retarded with respect to the large-scale magnetic field,
with a delay time tr. Since the typical shearing wave growth rate
is of the order of a shear time, we expect in first approximation
tr ∼ S −1. The model used for Ex reproduces the reversal de-
scribed in the linear analysis, at |Bx| = Br. It also includes the
delay used in the Ey model for the same reasons. This term will
be referred to in the following as the γ effect term, as it is not
formally equivalent to the classical α effect used in dynamo the-
ory, but more an effect of anisotropic turbulent resistivity. Note
that the same kind of model involving an anisotropic turbu-
lent resistivity has been studied by Rogachevskii & Kleeorin
(2003) in the context of the shear dynamo. For this model to
be consistent with the previous analysis, we have to assume that
the underlying three-dimensional flow is turbulent in some way,
so that small-amplitude shearing waves are continuously excited
for tSW < 0, and then amplified linearly. Therefore, this model
assumes that the flow is already subject to a three-dimensional
turbulence and describes the variations of the large-scale field.

We numerically solve the toy model using γ = 7 × 10−3,
β = 10−2, tr = 2 S

−1 and Br = 8× 10−2. Here γ and β are chosen
so that our model mimics the main behaviour of the numerical
simulations, whereas Br is chosen according to the results of the
linear analysis. The resulting evolution of Bx and By is plotted
in Fig. 10, where the “mean shear” curve corresponds to the first
term on the right-hand side of equation (28), and the EMFs are
the β and γ terms. When comparing with the fully nonlinear cy-
cle (Figs 4–5), we find essentially the same time history for all
quantities. Interestingly, the cycles obtained using the model are
self-sustained despite the presence of a resistive effect, showing
that the basic properties discussed previously are sufficient to in-
ject magnetic energy into the system. One should note however
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and therefore an increasing positive shear term in (12). On the
contrary, for B0 > 0.08, one expects the shear term to decay and
eventually be reversed. This property is indeed observed in nu-
merical simulations. In particular, the shear term in Fig. 4 starts
to decay for B0 > 0.08 which corresponds to the the predicted
result from the linear analysis.

To check the effect of dissipation processes on this picture,
we plot in Fig. 8 the evolution of the Γ coefficients for Reynolds
and magnetic Reynolds numbers 4 times larger than in the pre-
vious case. One finds essentially the same properties: a system-
atic resistive effect for Γx and a reversal for Γy. Note however
that the reversal appears for a larger B0 in the less diffusive case
(B0 ∼ 0.2). We have also checked that these properties persist
when one changes the magnetic Prandtl number at sufficiently
large Re and Rm. These remarks suggest that the results found in
this linear analysis are not related to a finite resistivity or vis-
cosity property and may therefore appear for arbitrarily large
Reynolds numbers.

4.3. Phenomenological properties

The waves described in this section are clearly inhomogeneous
in the vertical direction. However, we can understand them as
a version of the magnetorotational instability in the presence
of a varying azimuthal field (Balbus & Hawley 1992; Terquem
& Papaloizou 1996). As one would expect, the transport coef-
ficients 〈bxby〉 and 〈vxvy〉 associated with the linear waves are
nonzero, and lead to an outward angular momentum transport
(Fig. 9), as in the classical vertical field calculation (see Pessah
et al. 2008). This demonstrates that these shearing waves actu-
ally extract energy from the mean flow as a classical MRI mode.
Because of the resistive properties of Ey, these waves also ex-
tract some energy from the large-scale azimuthal field, which
is generated through shearing of the radial field. Therefore, the
energy of the waves comes primarily from the mean shear, as
expected. Moreover, it is known that the azimuthal MRI has an
optimum growth rate for a given azimuthal wavelength kx and
field strength Bx. In the high-kz limit with a uniformB = B0ex,
this maximum growth rate is reached when kxB0 =
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(Ogilvie & Pringle 1996). Using our parameters, this leads to
B0 ∼ 0.2S Lz, which is surprisingly close to the magnetic field
amplitude for which Γx is reversed at large Re. Although this
argument is by no mean comprehensive, it draws attention to
the close relation between the transient amplification observed
in our analysis and the (ideal) MRI waves studied by Balbus &
Hawley (1992). Naturally, these conjectures need to be checked
more carefully using a proper analytical analysis, which will be
the subject of another paper.

5. A toy model

In this section, we provide a toy model reproducing the basic lin-
ear properties exhibited in the previous section. This toy model
does not pretend to be an accurate set of closure relations for
equations (12)–(13) but it includes the main physical ingredients
required to reproduce qualitatively the cycle behaviour described
in section 3. We therefore rewrite equations (12)–(13) as:

∂t B̂x(k0, t) = S B̂y(k0, t) − βB̂x(k0, t − tr), (28)

∂t B̂y(k0, t) = γB̂x(k0, t − tr)
Br − |B̂x(k0, t − tr)|

Br
, (29)

where γ, β and Br are constants. In this set of equations, we have
neglected the physical dissipation processes, as they are very
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∼ 50 S −1 as in the full simulations. This toy model reproduces qualita-
tively the results of our numerical simulations.

small in the budget of the simulations (see Figs 4–5). We have
assumed a resistive term for Ey, as expected from the linear anal-
ysis. However, to take into account the fact that the EMF is due
to a progressively amplified shearing wave, we assume the EMF
is slightly retarded with respect to the large-scale magnetic field,
with a delay time tr. Since the typical shearing wave growth rate
is of the order of a shear time, we expect in first approximation
tr ∼ S −1. The model used for Ex reproduces the reversal de-
scribed in the linear analysis, at |Bx| = Br. It also includes the
delay used in the Ey model for the same reasons. This term will
be referred to in the following as the γ effect term, as it is not
formally equivalent to the classical α effect used in dynamo the-
ory, but more an effect of anisotropic turbulent resistivity. Note
that the same kind of model involving an anisotropic turbu-
lent resistivity has been studied by Rogachevskii & Kleeorin
(2003) in the context of the shear dynamo. For this model to
be consistent with the previous analysis, we have to assume that
the underlying three-dimensional flow is turbulent in some way,
so that small-amplitude shearing waves are continuously excited
for tSW < 0, and then amplified linearly. Therefore, this model
assumes that the flow is already subject to a three-dimensional
turbulence and describes the variations of the large-scale field.

We numerically solve the toy model using γ = 7 × 10−3,
β = 10−2, tr = 2 S

−1 and Br = 8× 10−2. Here γ and β are chosen
so that our model mimics the main behaviour of the numerical
simulations, whereas Br is chosen according to the results of the
linear analysis. The resulting evolution of Bx and By is plotted
in Fig. 10, where the “mean shear” curve corresponds to the first
term on the right-hand side of equation (28), and the EMFs are
the β and γ terms. When comparing with the fully nonlinear cy-
cle (Figs 4–5), we find essentially the same time history for all
quantities. Interestingly, the cycles obtained using the model are
self-sustained despite the presence of a resistive effect, showing
that the basic properties discussed previously are sufficient to in-
ject magnetic energy into the system. One should note however

∂tBφ(t) = SBr(t)− βk2
0Bφ(t− tL)

∂tBr(t) = γk2
0Bφ(t− tL)

γ = γ0

[
1− |Bφ(t− tL)|

BRev

]

with
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and therefore an increasing positive shear term in (12). On the
contrary, for B0 > 0.08, one expects the shear term to decay and
eventually be reversed. This property is indeed observed in nu-
merical simulations. In particular, the shear term in Fig. 4 starts
to decay for B0 > 0.08 which corresponds to the the predicted
result from the linear analysis.

To check the effect of dissipation processes on this picture,
we plot in Fig. 8 the evolution of the Γ coefficients for Reynolds
and magnetic Reynolds numbers 4 times larger than in the pre-
vious case. One finds essentially the same properties: a system-
atic resistive effect for Γx and a reversal for Γy. Note however
that the reversal appears for a larger B0 in the less diffusive case
(B0 ∼ 0.2). We have also checked that these properties persist
when one changes the magnetic Prandtl number at sufficiently
large Re and Rm. These remarks suggest that the results found in
this linear analysis are not related to a finite resistivity or vis-
cosity property and may therefore appear for arbitrarily large
Reynolds numbers.

4.3. Phenomenological properties

The waves described in this section are clearly inhomogeneous
in the vertical direction. However, we can understand them as
a version of the magnetorotational instability in the presence
of a varying azimuthal field (Balbus & Hawley 1992; Terquem
& Papaloizou 1996). As one would expect, the transport coef-
ficients 〈bxby〉 and 〈vxvy〉 associated with the linear waves are
nonzero, and lead to an outward angular momentum transport
(Fig. 9), as in the classical vertical field calculation (see Pessah
et al. 2008). This demonstrates that these shearing waves actu-
ally extract energy from the mean flow as a classical MRI mode.
Because of the resistive properties of Ey, these waves also ex-
tract some energy from the large-scale azimuthal field, which
is generated through shearing of the radial field. Therefore, the
energy of the waves comes primarily from the mean shear, as
expected. Moreover, it is known that the azimuthal MRI has an
optimum growth rate for a given azimuthal wavelength kx and
field strength Bx. In the high-kz limit with a uniformB = B0ex,
this maximum growth rate is reached when kxB0 =

√
5/12 S

(Ogilvie & Pringle 1996). Using our parameters, this leads to
B0 ∼ 0.2S Lz, which is surprisingly close to the magnetic field
amplitude for which Γx is reversed at large Re. Although this
argument is by no mean comprehensive, it draws attention to
the close relation between the transient amplification observed
in our analysis and the (ideal) MRI waves studied by Balbus &
Hawley (1992). Naturally, these conjectures need to be checked
more carefully using a proper analytical analysis, which will be
the subject of another paper.

5. A toy model

In this section, we provide a toy model reproducing the basic lin-
ear properties exhibited in the previous section. This toy model
does not pretend to be an accurate set of closure relations for
equations (12)–(13) but it includes the main physical ingredients
required to reproduce qualitatively the cycle behaviour described
in section 3. We therefore rewrite equations (12)–(13) as:

∂t B̂x(k0, t) = S B̂y(k0, t) − βB̂x(k0, t − tr), (28)

∂t B̂y(k0, t) = γB̂x(k0, t − tr)
Br − |B̂x(k0, t − tr)|

Br
, (29)

where γ, β and Br are constants. In this set of equations, we have
neglected the physical dissipation processes, as they are very
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∼ 50 S −1 as in the full simulations. This toy model reproduces qualita-
tively the results of our numerical simulations.

small in the budget of the simulations (see Figs 4–5). We have
assumed a resistive term for Ey, as expected from the linear anal-
ysis. However, to take into account the fact that the EMF is due
to a progressively amplified shearing wave, we assume the EMF
is slightly retarded with respect to the large-scale magnetic field,
with a delay time tr. Since the typical shearing wave growth rate
is of the order of a shear time, we expect in first approximation
tr ∼ S −1. The model used for Ex reproduces the reversal de-
scribed in the linear analysis, at |Bx| = Br. It also includes the
delay used in the Ey model for the same reasons. This term will
be referred to in the following as the γ effect term, as it is not
formally equivalent to the classical α effect used in dynamo the-
ory, but more an effect of anisotropic turbulent resistivity. Note
that the same kind of model involving an anisotropic turbu-
lent resistivity has been studied by Rogachevskii & Kleeorin
(2003) in the context of the shear dynamo. For this model to
be consistent with the previous analysis, we have to assume that
the underlying three-dimensional flow is turbulent in some way,
so that small-amplitude shearing waves are continuously excited
for tSW < 0, and then amplified linearly. Therefore, this model
assumes that the flow is already subject to a three-dimensional
turbulence and describes the variations of the large-scale field.

We numerically solve the toy model using γ = 7 × 10−3,
β = 10−2, tr = 2 S

−1 and Br = 8× 10−2. Here γ and β are chosen
so that our model mimics the main behaviour of the numerical
simulations, whereas Br is chosen according to the results of the
linear analysis. The resulting evolution of Bx and By is plotted
in Fig. 10, where the “mean shear” curve corresponds to the first
term on the right-hand side of equation (28), and the EMFs are
the β and γ terms. When comparing with the fully nonlinear cy-
cle (Figs 4–5), we find essentially the same time history for all
quantities. Interestingly, the cycles obtained using the model are
self-sustained despite the presence of a resistive effect, showing
that the basic properties discussed previously are sufficient to in-
ject magnetic energy into the system. One should note however
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and therefore an increasing positive shear term in (12). On the
contrary, for B0 > 0.08, one expects the shear term to decay and
eventually be reversed. This property is indeed observed in nu-
merical simulations. In particular, the shear term in Fig. 4 starts
to decay for B0 > 0.08 which corresponds to the the predicted
result from the linear analysis.

To check the effect of dissipation processes on this picture,
we plot in Fig. 8 the evolution of the Γ coefficients for Reynolds
and magnetic Reynolds numbers 4 times larger than in the pre-
vious case. One finds essentially the same properties: a system-
atic resistive effect for Γx and a reversal for Γy. Note however
that the reversal appears for a larger B0 in the less diffusive case
(B0 ∼ 0.2). We have also checked that these properties persist
when one changes the magnetic Prandtl number at sufficiently
large Re and Rm. These remarks suggest that the results found in
this linear analysis are not related to a finite resistivity or vis-
cosity property and may therefore appear for arbitrarily large
Reynolds numbers.

4.3. Phenomenological properties

The waves described in this section are clearly inhomogeneous
in the vertical direction. However, we can understand them as
a version of the magnetorotational instability in the presence
of a varying azimuthal field (Balbus & Hawley 1992; Terquem
& Papaloizou 1996). As one would expect, the transport coef-
ficients 〈bxby〉 and 〈vxvy〉 associated with the linear waves are
nonzero, and lead to an outward angular momentum transport
(Fig. 9), as in the classical vertical field calculation (see Pessah
et al. 2008). This demonstrates that these shearing waves actu-
ally extract energy from the mean flow as a classical MRI mode.
Because of the resistive properties of Ey, these waves also ex-
tract some energy from the large-scale azimuthal field, which
is generated through shearing of the radial field. Therefore, the
energy of the waves comes primarily from the mean shear, as
expected. Moreover, it is known that the azimuthal MRI has an
optimum growth rate for a given azimuthal wavelength kx and
field strength Bx. In the high-kz limit with a uniformB = B0ex,
this maximum growth rate is reached when kxB0 =

√
5/12 S

(Ogilvie & Pringle 1996). Using our parameters, this leads to
B0 ∼ 0.2S Lz, which is surprisingly close to the magnetic field
amplitude for which Γx is reversed at large Re. Although this
argument is by no mean comprehensive, it draws attention to
the close relation between the transient amplification observed
in our analysis and the (ideal) MRI waves studied by Balbus &
Hawley (1992). Naturally, these conjectures need to be checked
more carefully using a proper analytical analysis, which will be
the subject of another paper.

5. A toy model

In this section, we provide a toy model reproducing the basic lin-
ear properties exhibited in the previous section. This toy model
does not pretend to be an accurate set of closure relations for
equations (12)–(13) but it includes the main physical ingredients
required to reproduce qualitatively the cycle behaviour described
in section 3. We therefore rewrite equations (12)–(13) as:

∂t B̂x(k0, t) = S B̂y(k0, t) − βB̂x(k0, t − tr), (28)

∂t B̂y(k0, t) = γB̂x(k0, t − tr)
Br − |B̂x(k0, t − tr)|

Br
, (29)

where γ, β and Br are constants. In this set of equations, we have
neglected the physical dissipation processes, as they are very
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−1 and Br = 0.08, exhibiting sustained
magnetic field oscillations. The time between two Bx reversals is about
∼ 50 S −1 as in the full simulations. This toy model reproduces qualita-
tively the results of our numerical simulations.

small in the budget of the simulations (see Figs 4–5). We have
assumed a resistive term for Ey, as expected from the linear anal-
ysis. However, to take into account the fact that the EMF is due
to a progressively amplified shearing wave, we assume the EMF
is slightly retarded with respect to the large-scale magnetic field,
with a delay time tr. Since the typical shearing wave growth rate
is of the order of a shear time, we expect in first approximation
tr ∼ S −1. The model used for Ex reproduces the reversal de-
scribed in the linear analysis, at |Bx| = Br. It also includes the
delay used in the Ey model for the same reasons. This term will
be referred to in the following as the γ effect term, as it is not
formally equivalent to the classical α effect used in dynamo the-
ory, but more an effect of anisotropic turbulent resistivity. Note
that the same kind of model involving an anisotropic turbu-
lent resistivity has been studied by Rogachevskii & Kleeorin
(2003) in the context of the shear dynamo. For this model to
be consistent with the previous analysis, we have to assume that
the underlying three-dimensional flow is turbulent in some way,
so that small-amplitude shearing waves are continuously excited
for tSW < 0, and then amplified linearly. Therefore, this model
assumes that the flow is already subject to a three-dimensional
turbulence and describes the variations of the large-scale field.

We numerically solve the toy model using γ = 7 × 10−3,
β = 10−2, tr = 2 S

−1 and Br = 8× 10−2. Here γ and β are chosen
so that our model mimics the main behaviour of the numerical
simulations, whereas Br is chosen according to the results of the
linear analysis. The resulting evolution of Bx and By is plotted
in Fig. 10, where the “mean shear” curve corresponds to the first
term on the right-hand side of equation (28), and the EMFs are
the β and γ terms. When comparing with the fully nonlinear cy-
cle (Figs 4–5), we find essentially the same time history for all
quantities. Interestingly, the cycles obtained using the model are
self-sustained despite the presence of a resistive effect, showing
that the basic properties discussed previously are sufficient to in-
ject magnetic energy into the system. One should note however

∂tBφ(t) = SBr(t)− βk2
0Bφ(t− tL)

∂tBr(t) = γk2
0Bφ(t− tL)

γ = γ0

[
1− |Bφ(t− tL)|

BRev

]

with
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Br

Mean Shear

Non axisymmetric 
Seed

Shearing waves

“MRI Type”

amplification

Turbulent Cascade

EΦ =“Dynamo”

Non Linear feedback ?

Er =“turbulent 
resistivity”

Non Linear coupling
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The MRI naturally provides a (non linear) dynamo feedback when a 
non homogeneous BΦ is imposed (Lesur & Ogilvie 2008)

Explains the existence of a large scale cycle, with no dependance on 
the dissipation scales (should work even with very large Re, Rm)

Dynamo feedback due to an anisotropic resistivity (no α effect)
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However

No precise understanding of the origin of the non axisymmetric seed

How the Prandtl number enters this problem ?

Is this mechanism able to generate a global magnetic field ?

The MRI naturally provides a (non linear) dynamo feedback when a 
non homogeneous BΦ is imposed (Lesur & Ogilvie 2008)

Explains the existence of a large scale cycle, with no dependance on 
the dissipation scales (should work even with very large Re, Rm)

Dynamo feedback due to an anisotropic resistivity (no α effect)
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Studying one cycle (phases)...
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Budget for a pure exp(ik0z) mode :

with

Involves coupling between 
various other modes

Er acts always as a resistive term

Eϕ is responsible for the cyclic behaviour

∂B̂φ

∂t
= SB̂r − ik0Êr − ηk2

0B̂φ

∂B̂r

∂t
= ik0Êφ − ηk2

0B̂r

Ê = (û×B)k0

One Bϕ cycle from a 
numerical simulation

4 G. Lesur and G. I. Ogilvie: On Self-Sustained Dynamo Cycles in Accretion Discs

Fig. 3. Volume rendering of Bx for a simulation with Re = 1600 and Rm = 6400. Left panel: t = 260, corresponding to a cycle maximum.
Right panel: t = 280, corresponding to a cycle minimum. One easily observes the large-scale Bx(z) on the t = 260 snapshot whereas strong
nonaxisymmetric structures destroy the large scale structures at t = 280.
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Fig. 4. Amplitude projected on B̂x(k0, t) (left) and phase (right) of the terms involved in equation (12). The amplitude clearly shows one cycle
comparable to Fig. 2 for Bx. The cycle behaviour comes mainly from the shear term, whose contribution is initially positive (t < 270) and later
becomes negative (t > 270). EMF and resistive term always make dissipative contributions.
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Fig. 5. Amplitude projected on B̂y(k0, t) (left) and phase (right) of the terms involved in equation (13). The amplitude of By is approximately 20
times smaller than Bx. The cycle observed for By is related to the oscillation of the EMF Ex which is reversed at t ! 243.
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