

Dynamo Action in MRI-Driven Turbulence in a Cylindrical Annulus

> Aleksandr Obabko ^{1,2} Fausto Cattaneo ^{1,2,3,4} Paul Fischer ^{3,4}

"Magnetic Field Generation in Experiments, Geophysics and Astrophysics" Conference *Kavli Institute for Theoretical Physics, Santa Barbara, CA* July 17, 2008

¹ NSF sponsored Physics Frontier Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas (CMSO)

- ² Department of Astronomy and Astrophysics, University of Chicago
- ³ Division of Mathematics and Computer Science, Argonne National Laboratory
- ⁴ Computation Institute, University of Chicago

KITP 2008

The process of accretion is required to explain

- The formation of compact objects: planets, stars, supermassive black holes
- The release of gravitational energy: Cataclysmic Binaries, Radio Galaxies, Active Galactic Nuclei

HH 30 (Hubble ST)

Sagittarius A* (ESO)

Circular Keplerian rotation $\Omega \propto r^{-3/2}$ with angular momentum $r^2\Omega \propto \sqrt{r}$ increasing outward is (linearly) stable (for axisymmetric disturbances) due to Rayleigh criterion

- ⇒ Magneto-Rotational Instability (Balbus & Hawley 1991; Velikov 1959, Chandrasekhar 1960) for hydro-magnetic flows with angular velocity increasing inward $\Omega \propto r^{-3/2}$ r
- Saturation of MRI?

John William Strutt, third Baron Rayleigh

- Some basic features of the MRI can be studied by laboratory experiments using liquid metals (Na, Ga) confined between coaxial rotating cylinders
- Cylinders rotate so that basic state has circular streamlines and angular velocity increasing inward and angular momentum outward (Keplerian-like profile). Ideally, $\begin{bmatrix} R_1^2 \Omega_1 R_2^2 \Omega_2 \end{bmatrix} = 1 \begin{bmatrix} (\Omega_1 \Omega_2) R_1^2 R_2^2 \end{bmatrix}$

$$u_{\theta} = r \,\Omega_{C}(r) = r \left| \frac{R_{1}^{2} \Omega_{1} - R_{2}^{2} \Omega_{2}}{R_{1}^{2} - R_{2}^{2}} \right| + \frac{1}{r} \left| \frac{(\Omega_{1} - \Omega_{2})R_{1}^{2}R_{2}^{2}}{R_{1}^{2} - R_{2}^{2}} \right|$$

Princeton MRI liquid gallium experiment: H. Ji & J. Goodman (see also Schartman 2008)

Periodic in the vertical: circular Couette (Keplerian-like) flow

$$u_{\theta} = r \,\Omega_{C}(r) = r \left[\frac{R_{1}^{2} \Omega_{1} - R_{2}^{2} \Omega_{2}}{R_{1}^{2} - R_{2}^{2}} \right] + \frac{1}{r} \left[\frac{(\Omega_{1} - \Omega_{2}) R_{1}^{2} R_{2}^{2}}{R_{1}^{2} - R_{2}^{2}} \right]$$

Experiments need vertical boundaries: lead to some form of Ekman flow Azimuthal vorticity (*Re*=6200)

0.5

0

-0.5

-1

0.6

0.8

1

1.2

1.4

 Inward/outward Ekman flows are due to near-wall rotation momentum deficit/excess over centripetal pressure gradient (Obabko, Cattaneo & Fischer 2008)

Vagn Walfrid Ekman

 $\Rightarrow \text{Disruption of Ekman circulation} \\ \text{in the case of rings and therefore,} \\ \text{decrease of associated angular} \\ \text{momentum due to smaller } u_r u_{\theta} \\ \text{correlation} \end{cases}$

Experiments:

- Can reach high Reynolds number $(Re = O(10^6 10^7))$
- Are stuck at low magnetic Reynolds number $(Rm = O(10 10^2))$
- Vertical boundaries confuse the issue
- Difficult to take measurements with high spatial resolution
- Can be run for a long time

Simulations:

- "Scenarios" (Leo Kadanoff) require validation
- Stuck at moderate Reynolds numbers (both kinetic and magnetic)
- No problem' with vertical boundary conditions
- Can measure anything (but getting harder with bigger supercomputers)
- Almost impossible to run for very long

 \Rightarrow In particular to MRI, it is extremely hard to conduct high Rm MRI experiment

 \Rightarrow FFT in time works better for experiments and FFT in space – for simulations

 Incompressible viscous resistive MHD equations in cylindrical geometry of Princeton MRI liquid gallium experiment

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = (\mathbf{B} \cdot \nabla) \mathbf{B} + \frac{1}{Re} \nabla^2 \mathbf{u} - \nabla \left(p + \frac{\mathbf{B}^2}{2} \right)$$
$$\frac{\partial \mathbf{B}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{B} = (\mathbf{B} \cdot \nabla) \mathbf{u} + \frac{1}{Rm} \nabla^2 \mathbf{B}$$
$$\nabla \cdot \mathbf{u} = \nabla \cdot \mathbf{B} = 0$$
$$Re = \frac{(\Omega_1 R_1 - \Omega_2 R_2)(R_2 - R_1)}{\nu}, \quad Rm = Re \ Pm$$

• Boundary conditions:

Element boundary mesh

$u_r = u_z = 0, u_\theta = \Omega(r) r,$			$\Omega_1 = 3.003,$	$r = R_1 = 0.538$
$B_r = B_{\theta} = 0,$		$\Omega(r) = \langle$	$\Omega_2 = 0.400,$	$r = R_2 = 1.538$
$ B - B = \frac{\partial B_z}{\partial B_z} = 0$			Ω ₃ ,	$R_1 < r < \frac{R_1 + R_2}{2}$
$ \mathbf{D}_{z} _{r=R_{1},R_{2}} - \mathbf{D}_{o}, \qquad \partial z \mid_{z=0,H} - 0$			$\Omega_4,$	$\frac{R_1 + R_2}{2} < r < R_2$

• Solved numerically by MHD version of spectral element code Nek5000 optimized for highly parallel machines

Axisymmetric vs 3D (z-periodic, *Bz*₀=0.05)

- \Rightarrow Axisymmetric solution is strongly unstable to 3D perturbations ($P_m = O(1)$)
- ⇒ Saturation both through dissipation and modification of background velocity for axisym / 3D toward constant azimuthal / constant angular velocity (cf. Julien & Knobloch 2005)
- * Acknowledge the use of resources of NERSC at Lawrence Berkeley National Laboratory (as INCITE 2005)
- **§** Acknowledge the help of NERSC Visualization Group, LBNL
- ^Y Run time on 32,768 processors of Blue Gene Watson (BGW) was provided courtesy of the IBM Corporation & acknowledgement of the use of resources of Argonne Leadership Computing Facility operated by ANL

Look at strongly supercritical cases (Re = 60,000 - periodic conditions)

Fluctuations of azimuthal quantities:

Axisymmetric

3D inner cylinder inner cylinder inner cylinder magnetic field velocity velocity

 \Rightarrow Qualitatively looks similar to (penetrative) convection

 \Rightarrow Torque increase: 5 (axisym) and 20 (3D)

MRI-Driven Turbulence: u'_{θ}

 \Rightarrow Streaks of high and low speed / angular momentum

Angular Momentum Transport

KITP 2008

• Maxwell stress flux domination due to the correlation of B_r and B_{θ}

- Angular momentum is carried outwards (inwards) by magnetic fluctuations that correspond to *winding* (*unwinding*) spirals -i.e. getting longer (shorter)
- In a random circular sheared motion there are more winding than unwinding spirals (can wind forever; can only unwind for a finite time)
- If angular velocity increases inwards (due to shear) Maxwell stress will carry angular momentum outwards (kinematic effect)

• Spectra for 3D solutions are moderately flat at small wavenumbers

• Fluctuations have comparable magnitude both for *B* and *u*

Magnetic field

 \Rightarrow Turbulent $Rm \leq 600$

• If the external axial field is switched off at the boundary, the averaged field decays but fluctuations survive for Rm=30000

• Probably, the case with Rm=30000 is a dynamo

 \Rightarrow Small-scale dynamo (with turbulent Rm ≤ 600)

⇒ The MRI-driven turbulence becomes self-sustained at high enough Rm / Re and regenerates magnetic field necessary for its own existence independently of the initial field that induced MRI in the first place

- A "scenario" of MRI-driven turbulence (MRIDT) provides very attractive rationale for enhanced angular momentum transport
 - In turbulent regime MRIDT might act as a (small-scale) dynamo
- MRIDT angular momentum transport
 - is dominated by Maxwell stresses due to negative correlation of radial and azimutal magnetic field fluctuations (kinematic effect)
- MRI saturates with highly 3D state of MRIDT through the dissipation and modification of the background velocity toward solid body rotation (cf. axisymmetric cases: constant azimuthal velocity)

Future work on simulations of flows with smaller magnetic Prandtl number
KITP 2008