Flux-conversion dynamo in a lab plasma

The lab toroidal plasma dynamo

- Converts poloidal to toroidal flux
- Redistributes magnetic field
- Half of a classical dynamo
- Relevant to jets

Flux conversion in both the jet column and the lobe, mechanisms similar to that of the lab

Mechanisms

 MHD alpha effect (with fluctuations arising from tearing instability)

Effects beyond MHD

reconnection (current-driven instability)

global magnetic structure (dynamo effects)

global flow structure (momentum transport)

<u>Outline</u>

MST description

Observation of flux conversion dynamo events

Mechanisms for dynamo

Magnetic field is helical

Reversed field pinch (RFP)

The MST experiment

R = 1.5 m, a = 0.5 m, I ~ 0.5 MA (B ~0.4 T), T \leq 2 keV, n \leq 4 x10¹³ cm⁻³

laser Faraday rotation (for B, j)

active spectroscopy (for v)

Perpendicular Viewing Chords

reconnection/dynamo events

The origin of reconnection

 Core reconnection is a linear tearing instability: spontaneous reconnection

 Edge reconnection is driven nonlinearly by the core modes: driven reconnection

Tearing instability

- Current-driven, by $\nabla(J_{\parallel}/B)$
- Resistive MHD instability
- Causes reconnection and dynamo

Manifestations of the dynamo

Rearranging the magnetic structure

Radial transport of parallel current (or field redistribution, flux conversion)

During a reconnection event

Flux conversion

half of a large-scale dynamo converts poloidal to toroidal flux; not the inverse

The Standard MHD model

Mean field ohm's law

$$\langle E \rangle$$
 + $\langle \tilde{v} \times \tilde{B} \rangle$ = $\eta \langle j \rangle$ dynamo effect

- $\widetilde{v}, \widetilde{B}$ are fluctuations from tearing modes
- denotes mean quantities, average over poloidal, toroidal directions; depends on radius only

Altering the magnetic structure

Quasilinear theory:
$$\langle \tilde{v} \times \tilde{B} \rangle \sim \nabla \cdot D\nabla \frac{\langle j \rangle}{\langle B \rangle}$$
 current diffusion

(Bhattacharjee, Hamieri; Strauss; Boozer.....)

Nonlinear MHD computation: a complete description

From nonlinear MHD computation:

Predicts details of dominant magnetic fluctuations

MHD dynamo in experiment

MHD explains dynamo at some locations in MST

but not all locations..

another dynamo mechanism must be active

$$\langle E \rangle = \eta \langle j \rangle + \langle \tilde{v} \times \tilde{B} \rangle + \langle \tilde{j} \times \tilde{B} \rangle / ne + \dots$$

MHD Hall dynamo dynamo

MHD and non-MHD dynamo effects add to produce self-organized state

From quasilinear theory

Two-fluid nonlinear computation underway

Compare to magnetorotational instability

MRI

Tearing instability

Resistive MHD instability	Ideal MHD instability
Current gradient driven	Flow gradient driven
Transport by fluid stresses	same
Transport amplified by nonlinear coupling	?
Mode saturates by transporting current, momentum transport is parasitic	Mode saturates by transporting momentum (partly)
In lab, alters flow	In disk, drives particles inward
Mode does NOT saturate by generating mean flow	Mode also saturates by generating mean magnetic

Compare to magnetorotational instability

Tearing instability MRI

Resistive MHD instability	Ideal MHD instability
Current gradient driven	Flow gradient driven
Transport by fluid stresses	same
Transport amplified by nonlinear coupling	?
In lab, alters flow	In disk, drives particles inward
Mode saturates by transporting current, momentum transport is parasitic	Mode saturates by transporting momentum (partly)
Mode does NOT saturate by generating mean flow	Mode also saturates by generating mean magnetic field

Hall dynamo = Lorentz force

$$\rho \frac{\partial \langle v \rangle_{\parallel}}{\partial t} = -\rho \langle \tilde{v} \cdot \nabla \tilde{v} \rangle_{\parallel} + \langle \tilde{j} \times \tilde{B} \rangle_{\parallel}$$
Reynolds
stress
Stress
Stress

Hall dynamo plasma flow altered

dynamo and momentum transport are coupled

Summary

- Flux conversion robust in lab plasma
- Two-fluid effects are important (related to two-fluid reconnection, but dynamo is a nonlinear effect)
- Indicates strong effect of correlated intermediate-scale flows and fields
- Two-fluid effects possibly important in flux conversion in jets