Dynamo Theory KITP, Santa Barbara 17 July 2008

Bistability and hysteresis of dipolar dynamos generated by chaotic convection in rotating spherical shells

R.D. Simitev

Department of Mathematics

F.H. Busse
Institute of Physics

Convective spherical shell dynamos

Basic state & scaling

$$T_S = T_0 - \beta d^2 r^2 / 2$$
$$\boldsymbol{g} = -d\gamma \boldsymbol{r}$$

Length scale: d

Time scale: d^2/ν

Temp. scale: $\nu^2/\gamma \alpha d^4$

Magn. flux density: $\nu(\mu\varrho)^{1/2}/d$

Model equations & parameters

Boussinesq approximation

$$\nabla \cdot \boldsymbol{u} = 0, \quad \nabla \cdot \boldsymbol{B} = 0,$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} =$$

$$-\nabla \pi - \tau \boldsymbol{k} \times \boldsymbol{u} + \Theta \boldsymbol{r} + \nabla^2 \boldsymbol{u} + \boldsymbol{B} \cdot \nabla \boldsymbol{B},$$

$$P(\partial_t \Theta + \boldsymbol{u} \cdot \nabla \Theta) = R \boldsymbol{r} \cdot \boldsymbol{u} + \nabla^2 \Theta,$$

$$P_m(\partial_t \boldsymbol{B} + \boldsymbol{u} \cdot \nabla \boldsymbol{B}) = P_m \boldsymbol{B} \cdot \nabla \boldsymbol{u} + \nabla^2 \boldsymbol{B}.$$

$$R = \frac{\alpha \gamma \beta d^6}{\nu \kappa}, \ \tau = \frac{2\Omega d^2}{\nu}, \ P = \frac{\nu}{\kappa}, \ P_m = \frac{\nu}{\lambda}$$

Boundary Conditions

$$egin{aligned} oldsymbol{r} \cdot oldsymbol{u} &= oldsymbol{r} \cdot oldsymbol{V} oldsymbol{r} imes oldsymbol{u}_{\mathrm{int}} = oldsymbol{\hat{e}_r} \cdot oldsymbol{B}_{\mathrm{ext}}, \\ oldsymbol{\hat{e}_r} \times oldsymbol{B}_{\mathrm{int}} &= oldsymbol{\hat{e}_r} \times oldsymbol{B}_{\mathrm{ext}}, \\ \Theta &= 0, \ \ \mathrm{at} \ \ r = r_i \equiv 2/3 \ \ \mathrm{and} \ \ r_o \equiv 5/3 \end{aligned}$$

Two types of dipolar dynamos generated by chaotic convection

Energy densities

- Fully chaotic (large-scale turbulent) regime.
- Two chaotic attractors for the same parameter values.
- Essential qualitative difference: contribution of the **mean poloidal dipolar energy**

	(ab)	(de)
Rm	133.6	196.5
Mdip/Mtot	0.803	0.527

black......mean poloidal green.....fluctuating poloidal red.....mean toroidal blue......fluctuating toroidal

$$R = 3.5 \cdot 10^6$$
, $\tau = 3 \cdot 10^4$, $P = 0.75$ and $P_m = 1.5$

Regions and transition

Ratio of fluctuating to mean poloidal magn energy

$$R = 3.5 \cdot 10^6, \ \tau = 3 \cdot 10^4$$

Two types of dipolar dynamos

φ Mean Dipolar (MD)

$$\widetilde{M}_p < \overline{\widetilde{M}}_p$$

• Fluctuating Dipolar (FD)

$$\widetilde{M}_p > \overline{M}_p$$

- MD and FD dynamos correspond to rather different chaotic attractors in a fully chaotioc system
- The transition between them is not gradual but is an abrupt jump as a critical parameter value is surpassed.
- The nature of the transition is complicated.

	MD	FD
Mdip/Mtot	(0.62,1)	(0.41,56)

Bistability and hysteresis in the MD <==> FD transition

Bistability and hysteresis in the ratio of fluctuating poloidal to mean poloidal magn energy

(a)
$$R = 3.5 \cdot 10^6$$
 $P/P_m = 0.5$

(b)
$$R = 3.5 \cdot 10^6$$
, $P = 0.75$

(c)
$$P = 0.75, P_m = 1.5$$

in all cases:
$$~\tau=3\cdot 10^4$$

The coexistence is **not an isolated phenomenon** but can be traced with variation of the parameters.

$$P_{MD} = 2.2$$
 $P_{FD} = 0.5$ $\sigma_{MD} = 0.07$ $\sigma_{FD} = 1$

The hysteresis is a purely magnetic effect

A property comparison of MD and FD dynamos (Spatial structures)

FD dynamos have a somewhat more irregular and small-scale internal structure (Bphi and meridional fieldlines)

A property comparison of MD and FD dynamos (Temporal variations)

- **Mean Dipolar** (MD) dynamos are **non-oscillatory**.
- Fluctuating Dipolar (FD) dynamos are oscillatory.

Half-period of oscillation in a FD dynamo (row-by-row)

$$R = 3.5 \cdot 10^6$$
, $\tau = 3 \cdot 10^4$, $P = 0.75$ and $P_m = 0.65$

Conclusion

- Two types of dipolar dynamos can be distinguished:
 - *) Mean dipolar dynamos (MD)
 - *) Fluctuating dipolar dynamos (FD)
- MD and FD dynamos have rather different properties.
- FD dynamos are normally oscillatory. In some cases this may lead to reversals.
- The transition between MD and FD dynamos is hysteretic.
- Most geodynamo simulations have typical parameters values
 P in [0.5, 2], Pm in [0.5, 10] and R < 10 Rc which are within the observed hysteresis region.

Thank you!