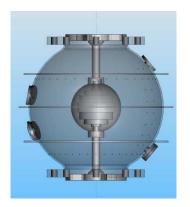
Dynamo experiments, Planets, Rotation

Dominique Jault

KITP and LGIT, CNRS, University Joseph-Fourier, Grenoble

13th June 2008, KITP Discussion, Santa Barbara

from results obtained by the DTS task force (Philippe Cardin, Henri-Claude Nataf, Thierry Alboussiere, Daniel Brito, Nadège Gagnière, DJ, Denys Schmitt)



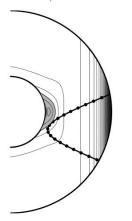
Possible goals for experiments from a geophysical viewpoint

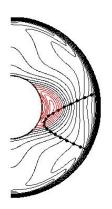
- Interplay of magnetic and rotation forces
- Fast dynamics responsible for the "observed" advection of the magnetic field at the core surface
- Generation of large scale magnetic and velocity fields from forcing at small scale (buoyancy flux at the ICB)
- Saturation mechanisms
- Mechanisms for reversals and excursions

Measurements in the DTS experiment

Available power: 2x11 kW

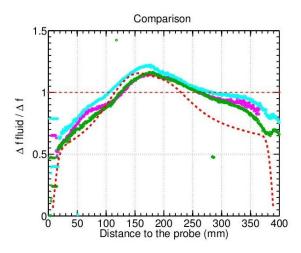
The magnetized inner core



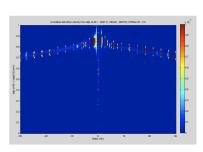

Intensity of the imposed dipolar field varying from 0.345 T.($S\sim2$) to 8 mT. in the fluid domain.

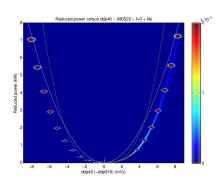
The angular velocity distribution

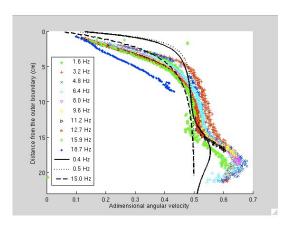
In the presence of rotation, M = 210, $Re = 6.10^4$



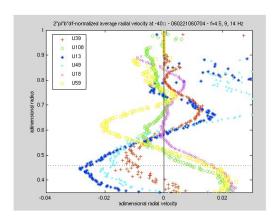
With outer sphere at rest, M = 40, $Re = 1.5 \cdot 10^3$

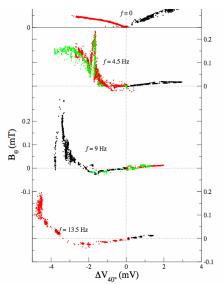

Angular velocity profiles with outer boundary at rest


Velocity measured up to 8. $m.s^{-1}$, $R_m \sim 20$.


Efficient entrainment of the fluid by the magnetized inner core

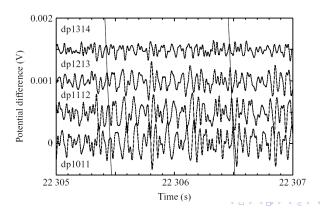
- "Average" angular rotation normalized by the inner core angular rotation
- Power dissipated in the fluid region


Angular velocity profiles in the presence of rotation


Analytical calculation of the profile in the geostrophic region using a turbulent friction law at the outer boundary (Gagnière and Nataf, in preparation) after Kleeorin et al. (1997).

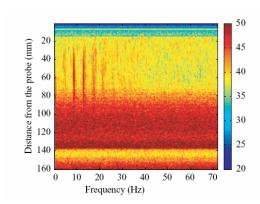
Average radial motions in the presence of rotation

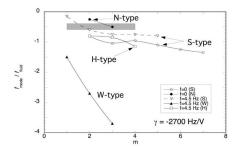
 $v\sim 0.2 m.s^{-1}$, $R_m\sim 0.5$


Time average induced field at the surface

Detection of wave motions

from electrical potential measurements at the surface (Schmitt et al., 2008)


Meridional component of the wave motions measured below the outer surface: $v \sim 0.4 m.s^{-1}$, $R_m \sim 1$


Detection of wave motions

from ultrasound measurements (radial velocity)

Penetration of the waves deep inside the core.

Different types of waves

N waves: no magnetic signature; explanation?: negligible magnetic field induced, at the surface, by the interaction between Rossby-type inertial waves and the imposed axial dipole field

Informations/questions gained from the experiment

- Turbulent Ekman boundary layer inferred at the outer boundary
- Observation of a variety of waves not predicted from the numerics
- Dynamo efficiency of these waves?
- Nonlinear interaction between the waves?

An important limitation of experiments

- Importance of magnetic diffusion
- Geophysical case: observation of magnetic field changes on fast (non-diffusive) timescales, for which rotation forces dominate magnetic forces
- Nearly 2D quasi-geostrophic dynamics
- Dynamics in presence of a z-independent toroidal field?