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Shell models of turbulence

Gledzer–Ohkitani–Yamada (GOY) models provide a scalar analogue
of the spectral Navier–Stokes equations.
E.g., the spectral domain is represented by N shells, of wavenumbers

kn = k02
n , n = 1, 2, . . . ,N .

The complex modes un satisfy
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Shell models of turbulence
Neglecting viscosity and forcing, this model conserves energy E and
helicity H,

E =
1

2

N∑
n=1

|un|2 , H =
N∑

n=1

(−1)nkn |un|2 .

exhibits the inertial range scaling of Kolmogorov,

En =
1

2
|un|2 ∼ k

−5/3
n ,

reproduces anomalous scalings of the structure functions Sp,

Sp(kn) = 〈|un|p〉 ∼ k
−ζ(p)
n ,

and shows increasing intermittency with n, in the PDFs of un.
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Use in heuristic dynamo models
Such shell models have been coupled to heuristic α-effect dynamo
models, using mean-field type relations

α ∼ 1

3
〈τ u · ∇ × u〉 ∼

N∑
n=1

(−1)n |un| ,

β ∼ 1

3

〈
τ |u|2

〉
∼

N∑
n=1

k−1
n |un| .

E.g. Galactic disk dynamo (Sokoloff & Frick, 2003).

dS

dt
= ikLαT − βS ,

dT

dt
= −ikLαS − βT .
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Use in heuristic dynamo models

E.g. geomagnetic reversals (Ryan & Sarson, 2007).

dS

dt
= αT − βS ,

dT

dt
= ωS − βT ,

dω

dt
= Γ− κω − λ1ST − λ2(S

2 + T 2) .

Interesting results perhaps due simply to effect of intermittent
noise in α, rather than any inherent realism of the underlying
turbulence (or low-order dynamo model).
But many extensions to more ‘realistic’ shell models exist. . .
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MHD shell models

MHD shell models are relatively well studied. E.g. Frick & Sokoloff
(1998):
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MHD shell models

Plunian & Stepanov (2007) incorporate non-local shell interactions
into a variant of this model.
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Figure 5. Spectra of kinetic (black curves) and magnetic (colour curves) energy

for three values of Pm (from left to right Pm = 10−3, 1 and 105) and several values

of α (indicated by the labels). The spectra on top (resp. bottom) correspond to the

kinematic (resp. dynamic) regime.

On the other hand, the non-local effects are much more significant for Pm > 1 (plots on the

right), mainly for the magnetic spectra at scales smaller than the viscous scales (kn > kν) and for

α > −1. In the kinematic regime the maximum of the magnetic energy spectrum occurs at scales

smaller than kνP
3/4
m when α > −1. In the dynamic regime some magnetic bottleneck appears.

To understand why this is so, let us first recall that the flow scale which produces magnetic

field in the most efficient way is the one for which the shear is the largest [31]. In the inertial

range the flow shear scales as knun ∝ k2/3
n , and it is then maximum for kn ≈ kν. Therefore the

non-local interactions relevant for the magnetic spectrum extension towards smaller scales are

mostly those involving Uν. The non-local terms involving Uν and generating magnetic energy

EB(n) with n ≫ ν also involve Bn±1. The corresponding non-local terms in (2) are of the form

kn(Tn−νb
2
n−νU

∗
ν Bn+1 + Tn−ν−1b

3
n−ν−1U

∗
ν Bn−1) which scale as k1+α

n . Therefore we understand that

for α + 1 > 0 the non-local effect may be strong at small scales.

In the kinematic regime, the fact that the magnetic energy spectrum does not peak at scales

smaller than k−1
ν for α < −1 is in contradiction with previous results [38]–[40]. We attribute this

discrepancy to the fact that in our model isotropy is assumed at any scale whereas the scenario

described in [39, 40] relies on strong anisotropy at small scales.

3.3. MHD energy fluxes

In this section we set α = −5/2 and ν = 10−8 and consider the dynamo saturated regime for

three values of Pm = 10−3, 1 and 104. The kinetic and magnetic spectra are plotted in the top

row of figure 6. Both spectra have inertial ranges of Kolmogorov type, scaling in k−2/3
n (scaling

in k−5/3 in the spectral space). For Pm = 10−3 we identify clearly that the magnetic dissipation

scale is much smaller than the viscous dissipation scale. However the distinction between them

is not so clear for Pm = 104.

New Journal of Physics 9 (2007) 294 (http://www.njp.org/)
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Thermal convective turbulence
Similar models have incorporated thermal convection. E.g.
Mingshun & Shida (1997):

dun

dt
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Relative scaling exponents consistent with She & Leveque (1994):
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−ζ(p)
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.
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Rotating turbulence
And other models have introduce rotation. E.g. Hattori, Rubinstein
& Ishizawa (2004):

dun

dt
= −νk2

nun + fn + iΩn(t)un

+ikn
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∗
n+1 +

1

2
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2
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)
,

Ωn = Ωc + Ω′
n ,

dΩ′
n

dt
= −Ω′

n

T
+

Ω̃n(t)

T
,

dΩ̃n

dt
= − Ω̃n

τ
+

gn(t)

τ
, 〈gn(t)gn(s)〉 = σnδ(t − s) .

For large Ωc , the energy spectrum changes to En ∼ k−2
n .

A similar approach has also been used for coherent large-scale fields
B0 in MHD turbulence (Hattori & Ishizawa, 2001).
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Magnetostrophic turbulence?

I Can similar models be developed for magnetostrophic
turbulence? (Or at least, moving in that direction, for
magnetoconvective or rotating MHD turbulence.)

• Via simple shell models, as described here?
• Via vector or hierarchical shell models?
• Via coupling to spatial models?

I What would the benefits be?

• Constraints on sub-grid scale features in LES simulations?
(Cf. similarity scaling.)

• E.g. Parameterisation of transport coefficients,
hyperdiffusivities, in terms of |B|, etc.

I Such models need be clearly constrained.

• Scalings expected from theory? (E.g. Moffatt, 2006.)
• Scalings observed in DNS simulations?
• Scalings observed in laboratory dynamos?
• Scalings observed in geomagnetic data?

Graeme Sarson: Shell models?, KITP Discussion 7



Magnetostrophic turbulence?

I Can similar models be developed for magnetostrophic
turbulence? (Or at least, moving in that direction, for
magnetoconvective or rotating MHD turbulence.)

• Via simple shell models, as described here?
• Via vector or hierarchical shell models?
• Via coupling to spatial models?

I What would the benefits be?

• Constraints on sub-grid scale features in LES simulations?
(Cf. similarity scaling.)

• E.g. Parameterisation of transport coefficients,
hyperdiffusivities, in terms of |B|, etc.

I Such models need be clearly constrained.

• Scalings expected from theory? (E.g. Moffatt, 2006.)
• Scalings observed in DNS simulations?
• Scalings observed in laboratory dynamos?
• Scalings observed in geomagnetic data?

Graeme Sarson: Shell models?, KITP Discussion 7



Magnetostrophic turbulence?

I Can similar models be developed for magnetostrophic
turbulence? (Or at least, moving in that direction, for
magnetoconvective or rotating MHD turbulence.)

• Via simple shell models, as described here?
• Via vector or hierarchical shell models?
• Via coupling to spatial models?

I What would the benefits be?

• Constraints on sub-grid scale features in LES simulations?
(Cf. similarity scaling.)

• E.g. Parameterisation of transport coefficients,
hyperdiffusivities, in terms of |B|, etc.

I Such models need be clearly constrained.

• Scalings expected from theory? (E.g. Moffatt, 2006.)
• Scalings observed in DNS simulations?
• Scalings observed in laboratory dynamos?
• Scalings observed in geomagnetic data?

Graeme Sarson: Shell models?, KITP Discussion 7


