Scaling laws for dynamos in rotating spherical shells

Ulrich Christensen

Max-Planck-Institute for Solar System Research, Katlenburg-Lindau, Germany

in collaboration with

Julien Aubert, Peter Olson, Andreas Tilgner

Introduction

- Geodynamo models successfully reproduced first-order properties of the geomagnetic field
- This seems surprising, because several control parameters are far from Earth values (viscosity and thermal diffusivity too large, rotation too slow)
- Pessimistic view: Models give right answer for wrong reasons
- Optimistic assumption: Perhaps current models approach a regime in which diffusive processes do not play a first-order role in the force balance
- → Use many case studies, covering decent range of control parameters, to derive scaling laws

Outline of dynamo models

- Boussinesq equations for convection-driven MHD flow
- Rigid inner and outer boundary
- $r_i / r_o = 0.35$
- Fixed temperature contrast, no internal heat sources

Control parameters

$$E = v/(\Omega D^2)$$
 10⁻⁶ 10⁻³ (*

$$Pr = v/\kappa$$
 0.1 10

$$Pm = v/\lambda$$
 0.06 20

$$Ra^* = \alpha g_o \Delta T / \Omega^2 D$$
 5 100 × Ra_{crit}

Modified Rayleigh number does not depend on diffusivity.

(*) With definition of Kono & Roberts [E= $v/(2\Omega r_0^2)$], the range is 2×10⁻⁷... 2×10⁻⁴.

Dynamo classes

Dynamo regimes

Inertial vs. Coriolis force:

Rossby number Ro_ℓ calculated with mean length scale ℓ in the kinetic energy spectrum

 $Ro_{\ell} = U/\Omega \ell$

Regime boundary at Ro_ℓ ≈ 0.12 (depends on heating mode, b.c.)

Scaling analysis: data basis and case selection

- ~160 model cases (125 dynamos, 35 failed dynamos)
- Each run for at least 50 advection times (some much longer)
- Symmetry in longitude assumed for E ≤ 10⁻⁵

Selection criteria for scaling analysis:

- Self-sustained dynamo
- Dipole-dominated magnetic field (f_{dip} > 0.35)
- Fully developed convection (Nu > 2.0)
- → 87 model cases pass these criteria

Scaling and parameters II

- Ro Rossby number Ro = $U/\Omega D$
- Lo Lorentz number Lo = B / $(\rho \mu)^{1/2}\Omega D$
- Nu* Modified Nusselt number Nu* = $Q_{adv}/(4\pi r_o r_i \rho c_p \Delta T \Omega D)$

Relation to conventional parameters

- Rayleigh number Ra Ra* = Ra E² Pr-1
- Nusselt number
 Nu
 Nu* = (Nu-1) E Pr-1
- Elsasser number Λ Lo = $(\Lambda E Pr^{-1})^{1/2}$

Flux-based modified Rayleigh number

$$Ra_{O}^{*} = Ra^{*}Nu^{*} = Ra E^{-3} Pr^{-2}$$

Ra*_Q is a measure for the work done by buoyancy forces

Scaling of Nusselt number

Use of modified "diffusionless" parameters allows to collapse the data and express the dependence by a single power-law.

Compared to non-rotating convection, the exponent is very large (≈ 0.53).

Velocity Scaling

 $Ro \sim Ra^*_{Q}^{0.41}$

Exponent 0.4 is predicted from a triple balance Coriolis – Inertia - Buoyancy

Dependence on magnetic Prandtl number ?

Two-parameter fit

Ro ~ $Ra^*_Q^{0.43} Pm^{-0.13}$

Two-parameter regression reduces misfit by factor two

Scaling of magnetic dissipation time

$$\tau_{diss} = E_{mag} / D_{ohm}$$
 (Magnetic energy / Ohmic Dissipation)

$$\tau_{diss} \sim Rm^{-1}$$

What controls the strength of the magnetic field?

The presence of magnetostrophic balance is often associated with an Elsasser number $\Lambda = B^2/\mu\eta\rho\Omega$ of order one.

In the numerical models, the Elsasser number varies in the range 0.06 – 100.

 \rightarrow Either the force balance is not magnetostrophic, or Λ not a good measure for magnetostrophy.

Alternative scaling: Magnetic field strength based on available power?

Power-limited magnetic field strength

$$1/2$$
 Lo² = E_{mag} = D_{ohm} τ_{diss} ~ D_{ohm} Ro⁻¹ E Pm⁻¹

$$Ra_Q^* \sim Power = D_{ohm} / f_{ohm}$$

Ro
$$\sim$$
 Ra * Q $^{2/5}$

Prediction: Lo
$$\sim \sqrt{f_{ohm}} Ra_Q^{*3/10}$$

f_{ohm}: fraction of ohmic dissipation

Magnetic Field Scaling

Lo ~ Ra*_Q^{1/3}

Empirical fit is close to predicted dependence

Scaling in dimensional form

$$B \sim \mu^{1/2} \, \rho^{1/6} \bigg(\frac{P}{4\pi R^2} \bigg)^{1/3}$$

 μ : magnetic permeability ρ : density

P: power R: radius of dynamo layer

B independent of conductivity and rotation rate!

Roe vs. control parameters

Fit involves all four control parameters

Ro_ℓ ~

Ra₀*1/2 E-1/3 Pm-1/5 Pr1/5

Dipole moment scaling

Earth predicted to lie close to transition dipolar - multipolar