Galactic Dynamo Theory

Ellen Zweibel

zweibel@astro.wisc.edu

Departments of Astronomy & Physics
University of Wisconsin, Madison
and

Center for Magnetic Self-Organization in

Laboratory and Astrophysical Plasmas

How was the Universe Magnetized?

- Top Down: Early universal process created pervasive magnetic field.
- Bottom Up: Magnetic fields were first generated in stars & accretion disks, and then propagated to large scales.

Did magnetic fields play a role in the formation of the first stars, growth of black holes through disk accretion, & gas dynamics in early clusters? Are galactic magnetic fields now sustained by dynamos or is the dynamo era in the distant past?

The Plan of This Talk

Collaborators: John Everett, Fabian Heitsch

- A short course on galaxies
- Traditional tools & current picture
- What must be explained
- Key processes
- Status of dynamo theory
- Novel ingredients: weak ionization & cosmic rays
- Future prospects

A Course on Galaxies

Interstellar gas is \sim 0.1% by mass. Temperature 10^{1-7} K, ionized by starlight, collisions, cosmic rays. $V_t/V_c \sim$ 0.05. Gas lost to star formation & galactic wind (?), gained by stellar mass loss, intergalactic infall, galaxy mergers. $R_m \sim$

 10^{15-21} .

Galaxy Evolution

Galaxies form hierarchically from small structures. Galaxy formation is an ongoing processes, with accretion of dwarf galaxies and major mergers continuing today.

Traditional Tools

- **2** Zeeman effect (B_{\parallel} ; atomic and molecular gas)
- Faraday rotation (B_{\parallel}) ; ionized gas)
- Radio continuum polarization (B_{\perp} ; relativistic electrons)
- ▶ Polarization from aligned dust grains (B_{\perp} orientation only; dense gas and dust)

 B_{\parallel} means along the line of sight; B_{\perp} means in the plane of the sky. Traditional tools used to great effect in the local Universe and back to a few tenths its present age.

Synchrotron Maps

The vectors denote orientation of B projected on the plane of the sky. The degree of polarization is a measure of unresolved magnetic field structure: $p/p_{max} \sim \langle B \rangle^2/\langle B^2 \rangle$.

Faraday Rotation Maps

Faraday rotation is a probe of field *direction*, and reveals a coherent azimuthal Galactic field, with reversals (Han 2003). $\langle B \rangle \sim 1.5 \mu G$; $B_{rms} \sim 5 \mu G$.

Fieldstrength - Density Relation

Troland & Heiles (1986) showed that in diffuse gas the fieldstrength-density relation is very weak. Is this evidence of enhanced diffusion?

Beyond Galaxies & Back in Time

- Only upper limits $(10^{-9}G)$ for coherent, pervasive intergalactic field.
- Big Bang nucleosynthesis bounds cosmological B at $\sim 0.1 \mu G$.
- Galaxy clusters have $\sim 0.1 \mu G$ fields.
- The oldest stars in the Galaxy appear to have formed in material irradiated by cosmic rays.

Pending Observational Issues

- Parity of B_{ϕ} with respect to Galactic plane.
- Existence of coherent vertical field.
- Coherence length of B_{ϕ} .
- Extension of lookback time to probe earlier evolution.

What Must be Explained

- Fieldstrength near equipartition with gas, consistent with turbulence theory & stability constraints.
- Azimuthal orientation reflects shear by strong differential rotation.
- Is the weak fieldstrength-density relation a signature of turbulent diffusion?
- Largescale coherence now and 90% of the way back to the Big Bang is the most difficult feature to understand.

Key Ingredients

- Magnetogenesis (by the Biermann Battery?) & subsequent amplification in small objects like stars & accretion disks.
- Propagation to large scales by explosions, winds, jets,
 & turbulent diffusion.
- Amplification process.
- Process for generating large scale field from small scale incoherent field.
- "Magnetic assimilation" process.

Critical Fieldstrengths

Consider a system with:

- Temperature $T = 10^4 \text{K}$
- **▶** Density n = 1cm⁻³
- Ionization fraction x = 0.1
- Velocity $V = 10 \text{km s}^{-1}$
- Size L = 300 pc
- Kolmogorov scale $\sim 10^{14} {\rm cm}$

Then...

Physical Regimes

- $B = 10^{-21}$ G: electrons are magnetized
- $B = 10^{-18}$ G: protons are magnetized
- $B = 10^{-13.5}$ G: GeV cosmic rays are magnetized & couple to gas through collective effects
- $B = 10^{-10}$ G: viscosity perpendicular to B is suppressed
- $B = 10^{-7}$ G: ions & neutrals decouple above the viscous scale
- $B = 10^{-5.5}$ G: field reaches equipartition with the gas

Mean Field Theory

- α & β tensors
 - For magnetic perturbations caused by expanding interstellar bubbles
 - For magnetic buoyancy instabilities
 - In weakly ionized gas
- Solve mean field dynamo equations
 - Monotonic & oscillatory instabilities
 - Sensitive to α , β dependence on position
 - Variety of saturation models explored
- Subject to the usual criticisms.

Key Processes - Decay at Small Scales

Magnetic power spectra from a series of simulations with increasing ratio of viscosity/resistivity. Note peak at the resistive scale, expected from previous slide (Schekochihin et al 2002). Anisotropic viscosity is key piece of missing physics.

Novel Ingredient: Partial Ionization

Magnetic field is coupled to the plasma, not the neutrals.

$$\rho_i \frac{d\mathbf{v}_i}{dt} = \mathbf{F_i} + \mathbf{J} \times \mathbf{B} - \rho_i \nu_{in} (\mathbf{v}_i - \mathbf{v}_n)$$

If $\rho_i/\rho_n << 1$, then on timescales » ion-neutral collision time, $\mathbf{v}_i - \mathbf{v}_n \approx \mathbf{J} \times \mathbf{B}/\rho_i \nu_{in} \equiv \mathbf{v}_D$ and $\mathbf{v} \approx \mathbf{v}_n$. The field drifts relative to the neutrals at velocity \mathbf{v}_D . This is called ambipolar diffusion.

Turbulent Ambipolar Diffusion

Turbulence & ambipolar diffusion combine to give efficient transport, mixing in the field. Gives a large diffusivity but does not change topology. Enhanced rate of ambipolar diffusion in a turbulent medium (EZ2002, Heitsch et al 2004) rapidly destroys fieldstrength-density relation.

Dynamos in Weakly Ionized Gases

Left: Fieldstrength in a kinematic "fast dynamo". Right: Fieldstrength if the neutrals have the flow pattern in the LHS panel but the ion flow is determined by ion-neutral friction & Lorentz forces (Heitsch & Zweibel 2008).

Dynamo Suppressed at Small Scales

The ion flow acts like a dynamo, but it saturates when B reaches equipartition. Field might therefore be amplified down to ambipolar scale; \gg resistive scale. Reynolds

stresses destroy the dynamo.

Novel Ingredient: Cosmic Rays

Relativistic particle component in equipartition with turbulence & magnetic field. Nearly isotropic, $\sim 10^7$ yr confinement time.

- Cosmic rays scatter from gyro-radius scale (~ AU) turbulence
 - scattering frequency $\nu \sim \omega_{cr} \left(\frac{\delta B}{B} \right)^2$
 - diffusion coefficient $D \sim \frac{c^2}{3\nu}$
- Gyroresonant excitation of Alfven waves by bulk streaming at $v_D>v_A$
 - growth rate $\Gamma \sim \omega_p \frac{n_{cr}}{n_i} \left(\frac{v_D}{v_A} 1 \right)$
- momentum & energy are transferred from the cosmic rays to the waves & from the waves to the background.

Implications

- Add buoyancy to galactic disk.
- Drive galactic winds, injecting magnetic fields into intergalactic medium
- Source of turbulence at gyroscale & below.
 - Preferred helicity
 - Amplify magnetic fields near shock waves

Summary & Outlook

- Origin & evolution of magnetic fields is still very open.
- Key observational data is still missing, but could be acquired.
- Galactic dynamos have unique requirements, extreme parameters & some novel features.
- Dynamo processes must operate today and may have observable signatures.