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Isolated systems out of equilibrium

Quantum Quench
1) prepare a many-body quantum system 1n a pure state |\Yo, that 1s not

an eigenstate of the Hamiltonian

2) let 1t evolve according to quantum mechanics (no coupling to
environment)

U(t)) = e [to)

Questions: ® How can we describe the dynamics?
® Does 1t exist a stationary state?

® (an i1t be thermal? In which sense?

Don’t forget: '¥'(¢)) 1s pure (zero entropy) for any ¢ while
the thermal mixed state has non-zero entropy
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Entanglement & thermodynamics

@ |Y(¢)) time dependent pure state
Reduced density matrix: pa(t)=Trs p(¢)

@ pa(t) corresponds to a mixed state

The entanglement entropy

Sa(t)= -Tr[pa(t) In pa(t)] measures
the bipartite entanglement between
A&B

@ The expectation values of all local
observables 1in A are

(P(1)|OaA(x) (1)) = Tr[pa(t) Oa(x)]
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Entanglement & thermodynamics

@ |Y(¢)) time dependent pure state
Reduced density matrix: pa(t)=Trs p(¢)

@ pa(t) corresponds to a mixed state

The entanglement entropy

Sa(t)= -Tr[pa(t) In pa(t)] measures
the bipartite entanglement between
A&B

@ The expectation values of all local
observables 1in A are

(P(1)|OaA(x) (1)) = Tr[pa(t) Oa(x)]

@ Stationary state exists if for any finite subsystem A of an infinite system

ltim PA(t) = pa(o0) exists



| Thermalization |

Consider the Gibbs ensemble for the entire system AUB

pr= € HT[7 with Wo| H|Wo) = Tr[pr H]

T is fixed by the energy in the initial state: no free

Reduced density matrix for subsystem A:

The system thermalizes 1f for any finite subsystem A

parameter!!

PAT= PA(©)

In jargon: the infinite part B of the system acts as an heat bath for A
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What about integrable systems?
Proposal by Rigol et al 2007: The GGE density matrix

it 7 e by ¥4 1y 0= T

Again no free parameter!!

I are the integrals of motion of H, i.e. [1n,H]=0

Reduced density matrix for subsystem A: pa,GGe=T11B pGGE

The system is described by GGE 1f for any finite subsystem A of an

infinite system

[Barthel-Schollwock *08]

A.GGE — A(OO) [Cramer, Eisert, et al ’08] + ........
/0 ’ [0 [PC, Essler, Fagotti *12]
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Generalized Gibbs Ensemble |

Which imntegral of motions must be included in the GGE?

Any quantum system has too many integrals of motion,
regardless of integrability, e.g.
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Which imntegral of motions must be included in the GGE?

Any quantum system has too many integrals of motion,
regardless of integrability, e.g.

Solution: Too long and technical proof/argument to be discussed here

PGGE= € Ximin /7

where I, 1s a complete set of local and quasilocal (in space) integrals
of motion e s A

[ 1, 1:]=0 [Ln,H]=0 I =) Owm(x)
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~ Entanglement vs Thermodynamics

The equivalence of reduced density matrices

PA,TD = PAa(0) TD=Gibbs or GGE

Implies that the subsystem’s entropies are the same: Sa D = Sa(c0)
The TD entropy Stp=-Tr pr In prp 1s extensive

Stp _ SATD _ SA(®)
V.  Va Va

For large time the entanglement entropy
becomes thermodynamic entropy




Quantum thermalization through

entanglement in an isolated
many-body system

Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko,

Philipp M. Preiss, Markus Greiner®
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FIG. 1. Schematic of thermalization dynamics in

closed systems. An isolated quantum system at zero tem-
perature can be described by a single pure wavefunction |¥).
Subsystems of the full quantum state appear pure, as long
as the entanglement (indicated by grey lines) between sub-
systems is negligible. If suddenly perturbed, the full system
evolves unitarily, developing significant entanglement between
all parts of the system. While the full system remains in a
pure, zero-entropy state, the entropy of entanglement causes
the subsystems to equilibrate, and local, thermal mixed states
appear to emerge within a globally pure quantum state.

Downloaded from http:/

Science 353, 794 (2016)
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" PC, J Cardy 2005
After a global quench, the 1nitial state |yo> has an extensive excess of energy

It acts as a source of quasi-particles at =0. A particle of momentum p has
energy £, and velocity v,=dE,/dp

For ¢ > 0 the particles moves semiclassically with velocity v,

particles emitted from regions of size of the 1nitial correlation length are
entangled, particles from far points are incoherent

The point x € A 1s entangled with a point x’ € B if a left (right) moving particle
arriving at x 1s entangled with a right (left) moving particle arriving at x’. This
can happenonly if x £ v, ~ X’ F vyt

B o2t << 21« B
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® The entanglement entropy of an interval A of length £ 1s proportional to the
total number of pairs of particles emitted from arbitrary points such that at
time f, xEAand x’E B

e Denoting with f(p) the rate of production of pairs of momenta £p and their
contribution to the entanglement entropy, this implies

= / daj’/ dm”/ dx / F(p)dpd (2" — z — v,t)d (2" — x + vyt)
x'€A x"'€B —00

X t/o dpf(p)2v,0(f — 2u,t) +€/OO dpf(p)0(2v,t — 1)

0

® When v,is bounded (e.g. Lieb-Robinson bounds) |v,|<vmax, the second

term 1s vanishing for 2 vmax <<€ and the entanglement entropy grows
linearly with time up to a value linear in £

Note: This 1s only valid 1n the space-time scaling limit t,— oo, with t/¢ constant
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| One example

Transverse field Ising chain

=
L

S(t):t/ ;i—¢2|e’\H(cosA¢)+€/
T

2|’ [t<l

1 —cos(h + hg) + hhg

COS A?‘) =

€p€

0
©®

2|e’ [t>2

Analytically for t, £ > 1 with t/€ constant

dy
gH(COS Ay)

M Fagotti, PC 2008

1l—=x 1

— X




In the experiment

Kaufmann et al 2016
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FIG. 3. Dynamics of entanglement entropy. Starting from a low-entanglement ground state, a global quantum quench
leads to the development of large-scale entanglement between all subsystems. We quench a six-site system from the Mott
insulating product state (J/U < 1) with one atom per site to the weakly interacting regime of J/U = 0.64 and measure the
dynamics of the entanglement entropy. As it equilibrates, the system acquires local entropy while the full system entropy
remains constant and at a value given by measurement imperfections. The dynamics agree with exact numerical simulations
with no free parameters (solid lines). FError bars are the standard error of the mean (S.E.M.). For the largest entropies
encountered in the three-site system, the large number of populated microstates leads to a significant statistical uncertainty
in the entropy, which is reflected in the upper error bar extending to large entropies or being unbounded. Inset: slope of the
early time dynamics, extracted with a piecewise linear fit (see Supplementary Material). The dashed line is the mean of these
measurements.
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What 1s the evolution of the entanglement
entropy for a generic integrable models?

—— — EEE————

B A B

® In a generic integrable model, there are infinite species of quasiparticles,

corresponding to bound states of an arbitrary number of elementary
excitations

® These must be treated independently

S(t) = Z {Zt/d)\vn()\)sn()\) + K/d)\sn()\)},

n

2|'Ufn,|t<€ 2|'Un|t>£

e To give predictive power to this equation, we should devise a way to
determine v, and s,



Idea: We can use the knowledge of the thermodynamic entropy 1n
the stationary state to go back in time for the entanglement

Alba & PC, 2016

S(t) = Z {Qt/d)\vn()\)sn()\) + E/d)\sn()\)},

n

2|vn [t<£ 2|vn, [t>4

> S(t = o0) :gZ/ drs, (\)

We need an expression of the stationary entropy written
in terms of the quasi-momenta of entangling quasiparticles




~ Elementary example: free fermions

L —

It exists a basis in which the Hamiltonian is % =) e.bjb;
k

(G1ven a statistical ensemble prw the TD entropy can be written as

T

dk
STD — L/ Z—H(nk)
with

ne — <b;2b]€>TD — TI‘[,OTDb;Lbk] H(n) = —nlnn — (1 — n) ln(l — n)

(i.e. each fermionic modes 1s independent and has probability 7« to be occupied and 1-7x to be empty)



~ Elementary example: free fermions

L —

It exists a basis in which the Hamiltonian is % =) e.bjb;
k

(G1ven a statistical ensemble prw the TD entropy can be written as

dk
STD — L/ Z—H(nk)

-
with

ne — <b;2b]€>TD — TI‘[,OTDb;Lbk] H(n) = —nlnn — (1 — n) ln(l — n)

(i.e. each fermionic modes 1s independent and has probability 7« to be occupied and 1-7x to be empty)

> Sa(t) =2t / gf_wcil(nkHé / %H () generally valid
2|vg [t<t 2|vg [t>4

Uk:dc

For the quench in the Ising model n.= <>

and the above reproduce the Toeplitz result by M Fagotti, PC 2008

—
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Let’s get technical




A slde on Thermodynamic Bethe Ansatz (TBA) _
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A slide on Thermodynamic Bethe Ansatz (TBA) |

|

An eigenstate of an interacting integrable model 1n the TD limit 1s
characterised by TBA data >70: Yang-Yang, Takahashi...

pnp 1S the particle density (ni/ 27 for free fermions)

pnn 1S the hole density ((/-nx)/2r for free fermions)

Pnt=pPnp+ Pni 18 the total density # 1/27 because of interactions
pnpand p, p are related by the (TD limit of) Bethe equations

Each set of ps defines a single macrostate, corresponding to many
microstates 1n a generalised microcanonical ensemble

The TD entropy has the Yang-Yang form

Syy =L} / dAGn,t()\) I o5, (A) =P p(A) 0 P p(A) =P, (A) In pn,h(A)D

Yang-Yang interpretation:

exp(Syr) counts the number of equivalent micro-states with the same densities




__ QuenchActionApproach

Caux & Essler 2013

Making a long story short: the stationary state may be represented
by a Bethe eigenstate (representative state) with calculable (but
still challenging) p’s.

The Yang-Yang entropy:

Syy = L Z /d)‘gn,t()‘) In Pn,t()‘)_Pn,p()‘) In pn,p()‘)_l)n,h()\) In Pn,h()‘)D

\/Sn(/l)

1s the corresponding TD entropy
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;; Final conjecture

—— ———

| & PC, 2016
Assuming that the Bethe excitations are the entangling quasi-particles:

Conjecture:> S(t) = Z {Qt/d)\vn()\)é”n()\) +€/d)\3n()\)}a

"ol t<t 2| vy, [t>0




: Final conjecture
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| & PC, 2016
Assuming that the Bethe excitations are the entangling quasi-particles:

Warning: The determination of the velocity v, (4) 1s a challenge because 1n
integrable models the velocities depend on the state (there 1s a dressing of
the bare velocities due to interaction).

We (reasonably) conjecture that the correct ones are the group velocities
of the excitations built on top of the stationary state

This 1s the very same working assumption as in
® [ight-cone spreading of correlation  Bonnes, Essler, Lauchli PRL 2013

Castro-Alveredo, Doyon, Yoshimura, PRX 2016

¢ Integrable hydrOdynamlcs Bertini, Collara, De Nardis, Fagotti, PRL 2016

Calculating these velocities 1s cumbersome, but doable
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conj ecture:

row data

— Z {Qt/d)\vn()\)sn()\) +£/d)\8n()\)}7

" 2|vp [t<l

Conjecture vs tDMRG

 (a) A=2 =40 tDMRG

~ o

2|vp [t>0

extrapolation

-—- Conjecture

<& Extrapolations |

1.5
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Conjecture vs iITEBD
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| Scrambling
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Interacting models can scramble, destroying the quasi-particle picture

For two intervals in an infinite system, we have Asplund, Bernamonti, Galli, Hartman 15

Maximal scrambling

/ 1) CFT with large central charge scramble

>

time
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Interacting models can scramble, destroying the quasi-particle picture

For two intervals in an infinite system, we have Asplund, Bernamonti, Galli, Hartman ‘15

Maximal scrambling

/ 1) CFT with large central charge scramble

>

time

Does XXZ scramble?
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Entanglement and entropy are key concepts standing at the foun-
dations of quantum and statistical mechanics. Recently, the study
of quantum quenches revealed that these concepts are intricately
intertwined. Although the unitary time evolution ensuing from a
pure state maintains the system at zero entropy, local properties
at long times are captured by a statistical ensemble with nonzero
thermodynamic entropy, which is the entanglement accumulated
during the dynamics. Therefore, understanding the entanglement
evolution unveils how thermodynamics emerges in isolated sys-
tems. Alas, an exa i W= ame i
was available sg
was deemed un
the standard qu
complemented

"2l |t<t

gyt Z [Zt/d)\vn()\)sn()\) —I—E/d)\sn()\)}, E

source of pairs of quasiparticle excitations. Let us first assume
that there is only one type of quasiparticles identified by their
quasimomentum A and moving with velocity v(\). Although
quasiparticles created far apart from each other are incoher-
ent, those emitted at the same point in space are entangled.
Because these propagate ballistically throughout the system,
larger regions get entangled. At time ¢, S(t) is proportional to
the total number of quasiparticle pairs that, emitted at the same
point in space, are shared between A4 and its complement (Fig.

A N 1CAH One . obhftain

dAf(2), [l

2|vp [t>0

@ This is a conjecture, search for proof
® Valid for arbitrary integrable models

® Show in a simple formula the crossover from
entanglement to thermodynamics
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Entanglement and entropy are key concepts standing at the foun-  source of pairs of quasiparticle excitations. Let us first assume
dations of quantum and statistical mechanics. Recently, the study that there is only one type of quasiparticles identified by their
of quantum quenches revealed thatthese .concep : ad moving with velocity v(A). Although
intertwined. Although the unitary far apart from each other are incoher-
pure state maintains the system at t the same point in space are entangled.
at long times are captured by a sta yate ballistically throughout the system,
thermodynamic entropy, which is t ngled. At time ¢, S(¢) is proportional to
during the dynamics. Therefore, un asiparticle pairs that, emitted at the same
evolution unveils how thermodyne red between A and its complement (Fig.
tems. Alas, an exact computation ¢ btains
was available so far only for noni
was deemed unfeasible for interac

fere, we sh | dAo(A)F(A) + £ aAf(N), [
the standard quasiparticle picture of the entanglement evc evojmil;. v + / f) [
complemented with integrability-basec knowledge of the st%ad e . 2|v[t>£
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Alba, Mestyan & PC

Bertini, Tartaglia & PC

Transport Breaking of integrability

Bertini, Fagotti, Piroli & PC Too many people



