Localization and thermalization in nuclear spin systems

KITP, August 28, 2018

Quantum Dynamics with Nuclear Spins

1. Buy a pendant on **OOV** ...

2. Use an old NMR spectrometer...

3. Observe localization & prethermalzation

... 1. Fluorapatite Spin system & approximate model

2. Hamiltonian engineering & Multiple Quantum Coherences

Novel metric of localization
 & OTOC measurement

Poster this afternoon!

1D system: FluorApatite

- Single-crystal, Ca₅F(PO₄)₃
- •Quasi-1D system of ¹⁹F spin ½
 - Ratio of couplings:

 $C_{in}/C_x = D_x^3/d_{in}^3 \approx 40$

- Intrinsic disorder:
 - ³¹P spin ¹/₂
 - Other defects

Cho, Yesinowski, J. Phys. Chem. 1993 P.C., Ramanathan, Cory, PRL 2007

¹⁹F spin dynamics

- Thermal state: $\rho = \frac{e^{-\beta \mathcal{H}}}{Z} \approx \frac{1}{2^N} + \epsilon \sum_i \sigma_z^i \qquad (\epsilon \approx 10^{-5})$
- Many-body evolution: apparent loss of coherence in <100us
- Control recovers the coherence for 1-2ms,
 - Signal shows distinct 1D, nearest-neighbor behavior

Van Lugt, Casper, Physica 1964, Zhang, PC, Viola et al. PRA 2009

Hamiltonian Engineering

•Dipolar Interaction with "long" range coupling $~J\sim 1/r^3$

$$H_F = \sum_{j < k} J_{jk}^F (2\sigma_z^j \sigma_z^k - \sigma_x^j \sigma_x^k - \sigma_y^j \sigma_y^k) + \sum_{j,\kappa} h_{j\kappa} \sigma_z^j s_z^{\kappa}$$

 Use Average Hamiltonian* techniques to create Floquet Hamiltonian

$$\begin{split} H &= u \sum J(\sigma_x^j \sigma_x^{j+1} + \sigma_y^j \sigma_y^{j+1}) & \text{integrable} \\ &+ v \sum J(\sigma_z^j \sigma_z^{j+1}) & \text{interaction} \\ &+ q \sum h_j \sigma_z^j & \text{disorder} \end{split}$$

*U. Haeberlen, 1976

Floquet Hamiltonian

Periodic pulse sequence stroboscopically creates desired H

$$\mathcal{T}\left\{e^{-i\int_0^t [H_F + H_c(t')]dt'}\right\} \equiv e^{-iHt}$$

 Use Average Hamiltonian* techniques to create Floquet Hamiltonian

$$\begin{split} H &= u \sum J(\sigma_x^j \sigma_x^{j+1} - \sigma_y^j \sigma_y^{j+1}) & \text{integrable} \\ &+ v \sum J(\sigma_x^j \sigma_x^{j+1} + \sigma_y^j \sigma_y^{j+1} - 2\sigma_z^j \sigma_z^{j+1}) \\ &+ g \sum h_j \sigma_z^j & + g' \sum \sigma_x^j & \text{transverse field} \end{split}$$

Out-of-Time-Order Commutator

- Has a (traveling) perturbation affected a distant operator?
- Do distant operators no longer commute, $[A_1(t), B_k(0)] \neq 0$?
- Measure :

$$\mathcal{C}(t) = \left\langle \| [A_1(t), B_k(0)] \|^2 \right\rangle_{\beta}$$

• Metric for localization, quantum information scrambling, quantum criticality, quantum chaos, ...

Out-of-Time-Order Commutator

- Has a (traveling) perturbation affected a distant operator?
- Do distant operators no longer commute, $[A_1(t), B_k(0)] \neq 0$?
- Measure :

$$\mathcal{C}(t) = \left\langle \| [A_1(t), B_k(0)] \|^2 \right\rangle_{\beta}$$

- Metric for localization, quantum information scrambling, quantum criticality, quantum chaos, ...
- •Extensive quantities, $B = \Sigma_k B_k$, reveal same effect

How to measure OTOc?

- "Spin counting" experiments in NMR:
 - How many correlated spins are there?
 - Gives information about sample geometry/structure
- Tool: Multiple Quantum Coherences (MQC)

Baum, Pines, JACS 1986, Munowitz, Pines, Mehring, JCP 1987

Multiple Quantum Coherences

- Tool: Multiple Quantum Coherences
- Coherent superposition: $|\psi\rangle = \frac{|m\rangle + |n\rangle}{\sqrt{2}} \xrightarrow{\sigma_z} \frac{|m\rangle + e^{i\varphi(n-m)} |n\rangle}{\sqrt{2}}$

OTOC & MQC

- We can measure OTOC:
 - -> NMR has been doing it for the past 40 years!
 - 1. Tweaking the pulse sequence we achieve time reversal
 - 2. Exploiting initial mixed state $\rho_0 = 1 + \epsilon Z$ we measure OTOC at T = ∞

•OTO correlator for Φ at β = 0

Munowitz, Pines, Mehring, JCP 1987

OTOC & MQC

•We can better measure OTOC:

-> by detecting NMR multiple quantum coherence distribution

- 1. Repeat the measurement varying φ
- 2. Fourier transform the signal to get MQC intensities, $I_q = \sum_{\varphi} S_{\varphi} e^{i \varphi q}$

• Expanding in power of φ , $S_{\varphi} \sim Z^2 + \|[Z(t), X]^2\|\varphi^2 + \dots$ which can be reliably extracted from MQC 2nd moment

$$\langle \| [Z(t), X]^2 \| \rangle_{\beta=0} = 4 \sum_q q^2 I_q(X)$$

Correlation Length

• For 1D systems, close to non-interacting, we can even relate MQC to the length over which correlations spread

- Defined average correlation length L_c for mixed states
- Explored differences in behavior between Anderson and Many-Body localization

Experimental Results: AL

- L_c grows as a function of time.
- With disorder of increasing strength the growth is quenched Time (ms)

Experimental Results: MBL

- •Now add the interaction term, $\sim v\sigma_z\sigma_z$:
- •The correlation length keeps growing, but very slowly

X. Wei, C. Ramanathan, PC, PRL 2018

- Dipolar Hamiltonian (XXZ, $J \sim r^{-3}$) leads to thermalization
 - Can a transverse field protect quantum information?

$$\mathcal{H}_{\mathrm{TFD}} = \sum_{j,k} J_{jk} \left[S_z^j S_z^k - \frac{1}{2} (S_y^j S_y^k + S_x^j S_x^k) \right] + g \underbrace{\sum S_x^j}_X$$

– In the limit of g>>J, the transverse field becomes a quasi-conserved quantity X_{pre} , and the system enters a long quasi-equilibrium regime

Dynamics of Magnetization

 The transverse (X) and longitudinal (Z) magnetization show distinct behaviors,

linked to the thermal and prethermal regimes

- Dipolar Hamiltonian (XXZ, $J\!\sim\!r^{-3}$) leads to thermalization
 - Can a transverse field protect quantum information?

$$\mathcal{H}_{\mathrm{TFD}} = \sum_{j,k} J_{jk} \left[S_z^j S_z^k - \frac{1}{2} (S_y^j S_y^k + S_x^j S_x^k) \right] + g \underbrace{\sum S_x^j}_X$$

- In the limit of g>>J, the transverse field becomes a quasi-conserved quantity X_{pre} , and the system enters a long quasi-equilibrium regime
- Measuring OTOC's involving the conserved quantity, we can distinguish between thermalization and prethermal behavior $\mathcal{C}_{\mathrm{XZ}} = \langle |[X(t), Z]|^2 \rangle$

Prethermalization : Experiments

Transverse field dipolar Hamiltonian (experiments)

Prethermalization : Experiments

Transverse field dipolar Hamiltonian (experiments)

Prethermal Hamiltonian

- •To check our interpretation we explicitly construct the prethermal Hamiltonian $\mathcal{H}_{\rm pre}=\mathcal{H}'-\delta\mathcal{H}(e^{-J/g})$
 - We need to find the unitary transformation $~{\cal H}' = U {\cal H}_{
 m TFD} U^{\dagger}$
 - We use a recursive expansion in J/g: only if system is prethermal the expansion converges and $|\mathcal{H}_{\rm pre}-\mathcal{H}'|pprox 0$

Prethermal Hamiltonian

•To check our interpretation we explicitly construct the prethermal Hamiltonian $\mathcal{H}_{\rm pre}=\mathcal{H}'-\delta\mathcal{H}(e^{-g/J})$

OTOC Dynamics

• Dynamics of other OTO commutators provides insight

OTOC Dynamics

• Dynamics of other OTO commutators provides insight

Poster this afternoon!

