Quantum Glassiness

Claudio Chamon

Preliminaries

Fractons

see Nandkishore \& Hermele review
Vijay, Haah, Fu
see Pretko - symmetric tensor gauge theories

Fractons and quantum (and classical) glassiness
w/ Claudio Castelnovo
w/ Claudio + David Sherrington (X-cube model from gonihedric model)

Restricted mobility excitations and ultra-slow systems w/o finite T thermodynamic transitions
w/ Lei Zhang, Stefanos Kourtis, Eduardo Mucciolo, and Andrei Ruckenstein

Classical glassiness

Classical glassiness

viscosity

Source: JOM, 52 (7) (2000)

Glassy $\mathrm{H}_{2} \mathrm{O}$

P/GPa

Physical aging

Physical aging II
 2D electron glass

Orlyanchik \& Ovadyahu, PRL (2004)

2D thin films of crystalline $\ln _{2} \mathrm{O}_{3-x}$

Source: Orlyanchik \& Ovadyahu, PRL (2004)

Quantum glassy systems

disordered systems
eg. quantum spin glasses
Bray \& Moore, J. Phys. C (1980)
Sachdev \& Ye, PRL (1993)
Read, Sachdev, and Ye, PRB (1995)
frustrated systems
eg. I frustrated Josephson junctions with long-range interactions
Kagan, Feigel'man, and loffe, ZETF/JETP (1999)
eg. II self-generated mean-field glasses
Westfahl, Schmalian, and Wolynes, PRB (2003)

Topological quantum glasses

strongly correlated systems with

topological order
Ground state degeneracy
Wen, Int.J. Mod. Phys. B (I99I), Adv. Phys. (I995) eg. fractional quantum Hall effect

$$
\nu=1 / 3 \Rightarrow N_{\mathrm{GS}}=3^{g}
$$

$$
N_{\mathrm{GS}}=3^{1}
$$

$N_{\mathrm{GS}}=3^{2}$

$$
N_{\mathrm{GS}}=3^{3}
$$

Topological quantum glasses

strongly correlated systems with
 topological order

Ground state degeneracy
Wen, Int. J. Mod. Phys. B (I99I), Adv. Phys. (1995) eg. fractional quantum Hall effect

$$
\nu=1 / 3 \Rightarrow N_{\mathrm{GS}}=3^{g}
$$

$$
N_{\mathrm{GS}}=3^{1}
$$

$$
N_{\mathrm{GS}}=3^{2}
$$

Interestingly enough, strong correlations that can lead to these exotic quantum spectral properties can in some instances also impose kinetic constraints, similar to those studied in the context of classical glass formers.

Why solvable examples are important?

The dynamics of classical glasses can be efficiently simulated in a computer; but real time simulation of a quantum system is hard!

Even a quantum computer does not help; quantum computers are good for unitary evolution. One needs a "quantum supercomputer", with many qubits dedicated to simulate the bath.

Solvable toy model can show unambiguously and without arbitrary or questionable approximations that there are quantum many-body systems without disorder and with only local interactions that are incapable (in accessible times) of reaching their quantum ground states.

2D example (not glassy yet)

Toric code (in Wen's plaquette formulation)
Kitaev, Ann. Phys. (2003) - quant-phys/97 Wen, PRL (2003)

$$
\vec{R}=i \vec{a}_{+}+j \vec{a}_{-} \quad I \equiv(i, j)
$$

2D example (not glassy yet)

Toric code (in Wen's plaquette formulation)
Kitaev, Ann. Phys. (2003) - quant-phys/97 Wen, PRL (2003)

$$
\vec{R}=i \vec{a}_{+}+j \vec{a}_{-} \quad I \equiv(i, j)
$$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom
Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom

Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom
Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom

Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom
Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom

Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom
Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom

Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom
Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

bath of quantum oscillators; acts on physical degrees of freedom
Caldeira \& Leggett, Ann. Phys. (1983) Feynman \& Vernon, Ann. Phys. (I963)
$\hat{\mathcal{H}}=\hat{H}+\hat{H}_{\text {bath }}+\hat{H}_{\text {spin } / \text { bath }}$
$\hat{H}_{\text {spin/bath }}=\sum_{I, \alpha} g_{\alpha} \sigma_{I}^{\alpha} \sum_{\lambda}\left(a_{\lambda, I}^{\alpha}+a_{\lambda, I}^{\alpha}{ }^{\dagger}\right)$

Defect dynamics

defects must go away to reach a GS
equilibrium concentration: $c \approx e^{-h / T}$
defects cannot be annihilated; must be recombined

$\sigma_{I}^{x, y} \Rightarrow$ simple defect diffusion (escapes glassiness) $\sigma_{I}^{z} \Rightarrow$ activated diffusion $\quad t_{\text {seq. }} \sim \tau_{0} \exp (2 h / T) \quad$ (Arrhenius law) equivalent to classical glass model by Garrahan \& Chandler, PNAS (2003) Buhot \& Garrahan, PRL (2002)

Defect dynamics

defects must go away to reach a GS
equilibrium concentration: $c \approx e^{-h / T}$
defects cannot be annihilated; must be recombined

$\sigma_{I}^{x, y} \Rightarrow$ simple defect diffusion (escapes glassiness) $\sigma_{I}^{z} \Rightarrow$ activated diffusion $\quad t_{\text {seq. }} \sim \tau_{0} \exp (2 h / T) \quad$ (Arrhenius law) equivalent to classical glass model by Garrahan \& Chandler, PNAS (2003) Buhot \& Garrahan, PRL (2002)

3D strong glass model

Chamon, PRL (2005)
Bravyi, Leemhuis, and
Terhal, Ann. Phys. (201I)
ground state degeneracy

$$
\begin{aligned}
& L_{x} \times L_{y} \times L_{z} \\
& g=2^{4 g c d\left(L_{x}, L_{y}, L_{z}\right)}
\end{aligned}
$$

3D strong glass model

always flip 4 octahedra: never simple defect diffusion

$$
t_{\text {seq. }} \sim \tau_{0} \exp (2 h / T) \quad \text { (Arrhenius law) }
$$

What about quantum tunneling?

defect separation: $\quad \xi \approx c^{-1 / 3} \approx e^{h / 3 T}$ virtual process: $\quad \mathcal{O}\left[(g / h)^{\xi}\right]$

$$
t_{\text {tun. }} \sim \tau_{0} \exp \left[\ln (h / g) e^{h / 3 T}\right]
$$

topological quantum protection

What about quantum tunneling?

defect separation: $\quad \xi \approx c^{-1 / 3} \approx e^{h / 3 T}$ virtual process: $\quad \mathcal{O}\left[(g / h)^{\xi}\right]$

$$
t_{\text {tun. }} \sim \tau_{0} \exp \left[\ln (h / g) e^{h / 3 T}\right]
$$

topological quantum protection

What about quantum tunneling?

defect separation: $\quad \xi \approx c^{-1 / 3} \approx e^{h / 3 T}$ virtual process: $\quad \mathcal{O}\left[(g / h)^{\xi}\right]$

$$
t_{\text {tun. }} \sim \tau_{0} \exp \left[\ln (h / g) e^{h / 3 T}\right]
$$

topological quantum protection

What about quantum tunneling?

defect separation: $\quad \xi \approx c^{-1 / 3} \approx e^{h / 3 T}$ virtual process: $\quad \mathcal{O}\left[(g / h)^{\xi}\right]$

$$
t_{\text {tun. }} \sim \tau_{0} \exp \left[\ln (h / g) e^{h / 3 T}\right]
$$

3D strong glass model

$$
\left.t_{\text {seq. }} \sim \tau_{0} \exp (2 h / T) \quad \text { (Arrhenius law }\right)
$$

Strong glass

$$
E_{B}=2 h
$$

3D strong glass model

$$
t_{\text {seq. }} \sim \tau_{0} \exp (2 h / T) \quad \text { (Arrhenius law) }
$$

Strong glass

$$
E_{B}=2 h
$$

3D fragile glass model

Classical triangular plaquette model

Newman \& Moore, PRE (1999)

$$
t_{\text {seq. }} \sim \tau_{0} \exp \left(\Delta^{2} / T^{2}\right)
$$

(super Arrhenius law)
Figure 2 A triangle of side 2^{k} can be flipped by flipping three triangles of side 2^{k-1}. The solid circles represent the defects and the lines indicate the triangles to be flipped at each step.

$$
\begin{gathered}
E_{B}=\varepsilon k \quad t_{\text {seq. }} \sim \tau_{o} \exp \left(E_{B} / T\right) \\
\xi \sim e^{\varepsilon / 2 T} \sim 2^{k} \Rightarrow k \sim \varepsilon / T 2 \ln 2 \\
t_{\text {seq. }}=\tau_{0} \exp \left(\varepsilon^{2} / T^{2} 2 \ln 2\right)
\end{gathered}
$$

3D fragile glass model
 Quantum model

Lectures at ICTP 2009 Summer College on "Nonequilibrium Physics from Classical to Quantum Low Dimensional Systems"
Castelnovo \& Chamon, Phil. Mag. (20II)

(b)

$\mathcal{O}_{I}=\sigma_{J_{1}(I)}^{\mathrm{Z}} \sigma_{J_{2}(I)}^{\mathrm{x}} \sigma_{J_{3}(I)}^{\mathrm{x}} \sigma_{J_{4}(I)}^{\mathrm{x}} \sigma_{J_{5}(I)}^{\mathrm{Z}}$

$$
\mathbb{Z}_{2} \text { charge }
$$

parity of defects on vertical lines

$$
\tau_{i, j ; q}=\prod_{k} \mathcal{O}_{(i, j, k ; q)}
$$

$$
s_{i, j ; q}=\prod_{k} \sigma_{(i, j, k ; q)}^{\mathrm{x}}
$$

$$
\tau_{i, j ; q}=s_{i, j ; q} s_{i+1, j ; q} s_{i, j+1 ; q}
$$

3D fragile glass model
 Quantum model

Haah, PRA (201I)

fractal sponge

https://quantumfrontiers.com/2018/02/16/fractons-for-real/

Annealing times

Quantum annealing

$$
t_{\text {tun. }} \sim \tau_{0} \exp \left[\ln (h / g) e^{h / 3 T}\right]
$$

$$
t_{\text {tun. }} \sim \tau_{0} \exp [\ln (h / g) \xi]
$$

Thermal annealing

Ex. I: Arrhenius law

$$
t_{\text {seq. }} \sim \tau_{0} \exp (\Delta / T)
$$

Ex. Il super-Arrhenius law

$$
t_{\text {seq. }} \sim \tau_{0} \exp \left(\Delta^{2} / T^{2}\right)
$$

$$
t_{\text {seq. }} \sim \tau_{0} \exp \left(\frac{\Delta}{h} \ln \xi\right)^{\alpha}
$$

"Solving" a problem of size L

Annealing times

"Solving" a problem of size L

Quantum annealing

$$
t_{\mathrm{tun} .} \sim \tau_{0} \exp [\ln (h / g) L]
$$

exponential time in L
L]

Example of exponential time for thermal annealing?

Example of a system w/o disorder and double-exponential in T relaxation

w/ Lei Zhang, Stefanos Kourtis, Eduardo Mucciolo, and Andrei Ruckenstein

- Provable absence of a thermodynamic phase transition
- Sub-extensive ground state degeneracy (scaling with the boundary)
- Relaxation times to (a) ground state is double-exponential in T

Example of a system w/o disorder and double-exponential in T relaxation

vertex model $\mathrm{w} / \mathrm{twin}$ spins on the bonds

Thermodynamics:
 absence of a phase transition

transfer matrix

free b.c. $\quad|\Sigma\rangle=\sum_{\{\sigma\}_{\zeta L}}\left|\{\sigma\}_{S L}\right\rangle$

$$
Z=\langle\Sigma|\left(\prod_{g=1}^{N_{\text {gates }}} \mathcal{T}_{g}\right)|\Sigma\rangle
$$

$$
\mathcal{T}_{g}|\Sigma\rangle=\lambda|\Sigma\rangle
$$

$H_{\text {gates }}=\Delta \sum_{g=1}^{N_{\text {gates }}} \bar{T}_{g}\left[\sigma^{\text {in }}(g), \sigma^{\text {out }}(g)\right], \quad \lambda=\sum_{\sigma_{\ell_{i}}^{\text {in }}, \sigma_{\ell_{i}}^{\text {out }}= \pm 1} e^{-\beta \Delta \bar{T}_{g}\left[\sigma^{\text {in }}(g), \sigma^{\text {out }}(g)\right]} e^{\beta J \sum_{\ell \in w^{\text {in }}(g)} \sigma_{\ell}^{\text {in }} \sigma_{\ell}^{\text {out }}}$
$H_{\text {links }}=-J \sum_{\ell} \sigma_{\ell}^{\text {in }} \sigma_{\ell}^{\text {out }}$,
$=\left(1+31 e^{-\beta \Delta}\right)(2 \cosh \beta J)^{5}$,

Thermodynamics: absence of a phase transition

transfer matrix

$$
Z=\left(1+31 e^{-\beta \Delta}\right)^{10 L^{2}}(2 \cosh \beta J)^{10 L^{2}-5 L} 2^{5 L}
$$

paramagnet-like: no phase transition

$$
\begin{aligned}
& H_{\text {gates }}=\Delta \sum_{g=1}^{N_{\text {gates }}} \bar{T}_{g}\left[\sigma^{\text {in }}(g), \sigma^{\text {out }}(g)\right] \\
& H_{\text {links }}=-J \sum_{\ell} \sigma_{\ell}^{\text {in }} \sigma_{\ell}^{\text {out }}
\end{aligned}
$$

Thermodynamics:
 absence of a phase transition

transfer matrix

$$
\begin{aligned}
H_{\text {gates }} & =\Delta \sum_{g=1}^{N_{\text {gates }}} \bar{T}_{g}\left[\sigma^{\text {in }}(g), \sigma^{\text {out }}(g)\right] \\
H_{\text {links }} & =-J \sum_{\ell} \sigma_{\ell}^{\text {in }} \sigma_{\ell}^{\text {out }}
\end{aligned}
$$

Thermodynamics: absence of a phase transition

$$
\xi_{T} \sim e^{K / 2 T}
$$

Temperature needed is not very low! Only logarithmic in the size of the system.

Thermodynamics: absence of a phase transition

$$
\xi_{T} \sim e^{K / 2 T}
$$

Temperature needed is not very low! Only logarithmic in the size of the system.

Thermodynamics: absence of a phase transition

$$
\xi_{T} \sim e^{K / 2 T}
$$

Temperature needed is not very low! Only logarithmic in the size of the system.

Dynamics is what matters!

How long does it take to thermalize?

Thermal annealing

$$
T(t)=J(1-t / \tau)
$$

Thermal annealing

Thermal annealing

$$
\tau \sim \tau_{o} e^{e^{J / 2 T} / T}
$$

Thermal annealing

1H0 bit type

a
b or c

Red shows the distribution when flipping spin a, blue for spins b and c, and green for spin S

Thermal annealing

$\tau \sim \tau_{o} \exp \left(E_{B} / T\right)$

$E_{B} \propto \xi \sim \exp (J / 2 T)$

$\tau \sim \tau_{o} e^{e^{J / 2 T} / T}$

Thermal annealing

$\tau \sim \tau_{o} \exp \left(E_{B} / T\right)$

$E_{B} \propto \xi \sim \exp (J / 2 T)$

Thermal annealing

1H0 bit type

a
b or c

Red shows the distribution when flipping spin a, blue for spins b and c, and green for spin S

Realizing the vertex model in the chimera architecture

w/ Zhi-Cheng Yang, Stefanos Kourtis, Eduardo Mucciolo, and Andrei Ruckenstein Nat. Comm. (2017)

Conclusion

Presented solvable examples of quantum many-body Hamiltonians of systems with exotic spectral properties (topological order) that are unable to reach their ground states as the environment temperature is lowered to absolute zero.

Presented solvable example of a classical/quantum many-body Hamiltonians with ultra-slow thermal relaxation (double exponential in temperature). This system would take time exponential in system size to thermal or quantum anneal.

Out-of-equilibrium strongly correlated quantum systems is an open frontier!

Conclusion

Presented solvable examples of quantum many-body Hamiltonians of systems with exotic spectral properties (topological order) that are unable to reach their ground states as the environment temperature is lowered to absolute zero.

Presented solvable example of a classical/quantum many-body Hamiltonians with ultra-slow thermal relaxation (double exponential in temperature). This system would take time exponential in system size to thermal or quantum anneal.

Out-of-equilibrium strongly correlated quantum systems is an open frontier!

