"Full Counting Statistics" after Quantum Quenches

Fabian Essler (Oxford)

EPSRC Engineering and Physical Sciences
KITP, August 2018

Joint work with

Mario Collura (Oxford)

Stefan Groha (Oxford)
Pasquale Calabrese (SISSA)

Probability Distributions of Observables

In many-body systems we typically focus on expectation values in some state or density matrix, e.g.

$$
\langle\Psi| \mathcal{O}(x, t)|\Psi\rangle \quad\langle\Psi| \mathcal{O}_{1}(x, t) \mathcal{O}\left(x^{\prime}, t^{\prime}\right)|\Psi\rangle
$$

Correspond to averages over many measurements.
Cold atoms: access to probability distributions of observables 0

$$
\mathcal{O}|n\rangle=\lambda_{n}|n\rangle \quad \text { eigenstates of } \odot
$$

$$
P_{\mathcal{O},|\Psi\rangle}(m)=\sum_{n}|\langle n \mid \Psi\rangle|^{2} \delta\left(m-\lambda_{n}\right)=\langle\Psi| \delta(\mathcal{O}-m)|\Psi\rangle
$$

Probability for measuring O in $|\psi\rangle$ returning value m

Probability distributions after quantum quenches

split Bose gases
 $$
H=\sum_{a=1}^{2} \int d x\left[\frac{1}{2 m} \partial_{x} \Psi_{a}^{\dagger}(x) \partial_{x} \Psi_{a}(x)+g \Psi_{a}^{\dagger}(x) \Psi_{a}^{\dagger}(x) \Psi_{a}(x) \Psi_{a}(x)\right]
$$

initial state $|\Psi(0)\rangle$

Low energies: $\quad \Psi_{1,2}(x) \propto e^{i \Phi_{s}(x) \pm i \Phi_{a}(x)}$

$$
\mathscr{H}=\sum_{j=a, s} \frac{v}{2 \pi} \int d x\left[K\left(\partial_{x} \Phi_{j}(x)\right)^{2}+\frac{1}{K}\left(\partial_{x} \Theta_{j}(x)\right)^{2}\right]
$$

In weak interaction limit measurements allow to extract

$$
P_{\mathcal{O},|\Psi(t)\rangle}(m)=\langle\Psi(t)| \delta\left(\int_{0}^{\ell} d x e^{i \phi_{a}(x)}-m\right)|\Psi(t)\rangle \quad \begin{gathered}
\text { Gritsev et al '06 } \\
\text { Kitagawa et al ' } 10, \ldots
\end{gathered}
$$

Very few other results either in, or out of, equilibrium...
A. Can we find situations where probability distributions give insights significantly beyond expectations values/variances?
B. Can probability distributions be calculated analytically?

Consider lattice spin models \Rightarrow natural observables are operators \mathcal{O} (quantized eigenvalues) that act on sub-systems of linear size l, e.g. sub-system magnetization;

When do we expect (non) trivial prob. distr.?

In states with finite correlation length ξ and $\xi \ll \ell$ usual
"thermodynamic" arguments apply

$$
P_{\mathcal{O}}(m)=\langle\Psi| \delta(\mathcal{O}-m)|\Psi\rangle=\sum_{r} P_{w}(r) \delta(m-r)
$$

Cases with (i) $\xi \rightarrow \infty$ or (ii) $\xi \gtrsim l$ will be most interesting.
(i) $D=1$: quantum critical $G S(\rightarrow$ equilibrium) or long-range int.
(ii) Energy density after $Q Q$ should not be too large.

- Consider a spin-1/2 chain with Hamiltonian

$$
H=J \sum_{j=1}^{L} S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+\Delta S_{j}^{z} S_{j+1}^{z}
$$

integrable, but essence of what follows has nothing to do with it.

- Prepare the system at time $t=0$ in a classical Néel state

$$
|\Psi(0)\rangle=|\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \ldots\rangle
$$

- AFM Long-range order $\langle\Psi(0)| \sum_{j}(-1)^{j} S_{j}^{z}|\Psi(0)\rangle \neq 0$
- time-evolve with H

$$
|\Psi(t)\rangle=e^{-i H t}|\Psi(0)\rangle
$$

Consider the PD of AFM short-range order $N_{\ell}^{z}=\sum_{j=1}^{\ell}(-1)^{j} S_{j}^{z}$

$$
\begin{aligned}
P_{N_{\ell}^{z},|\Psi(t)\rangle}(\mu) & =\langle\Psi(t)| \delta\left(N_{\ell}^{z}-\mu\right)|\Psi(t)\rangle \quad=\int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} e^{-i \mu \theta}\langle\Psi(t)| e^{i \theta N_{\tilde{\ell}}^{z}}|\Psi(t)\rangle \\
& \equiv \sum_{m \in \mathbb{Z}} P_{\ell}(m) \delta(\mu-m) \quad(\ell \text { even })
\end{aligned}
$$

require $\quad\langle\Psi(t)| e^{i \theta N_{\ell}^{z}}|\Psi(t)\rangle$

Initially depends on time, but eventually relaxes to a stationary value ("local relaxation") as $e^{i \theta N_{t}^{z}}$ is a local operator.

Probability distribution in initial state ($t=0$):

What do we expect in the stationary state?

Finite correlation length ξ

$\xi<\ell$

SRO has melted

part. relevant for "large quenches"

$\xi>\ell$

SRO remains, but spin-flip symmetry should be restored.

Analytic understanding for large Δ.

Prob. dist. = narrow Gaussian

* average

Here the prob. dist. does not give a lot of extra info (except at short times)...

Prob. dist. reveals a lot of physics beyond the average!

Time evolution for an "intermediate quench"

$$
H(h)=-\sum_{j=-\infty}^{\infty}\left[\sigma_{j}^{x} \sigma_{j+1}^{x}+h \sigma_{j}^{z}\right]
$$

Consider QQs e.g. from ground states of $H\left(h_{0}\right)$ and determine $P D$ of transverse subsystem magnetisation:

$$
\begin{aligned}
S_{u}^{z}(\ell) & =\sum_{j=1}^{\ell} \sigma_{j}^{z} \text { local in fermions } \\
P_{S_{u}^{z}(t),|\Psi(t)\rangle}(\mu) & =\langle\Psi(t)| \delta\left(S_{u}^{z}(\ell)-\mu\right)|\Psi(t)\rangle=\int_{-\infty}^{\infty} d \lambda e^{-i \mu \lambda} \underbrace{\langle\Psi(t)| e^{i \lambda S_{u}^{z}(\ell)}|\Psi(t)\rangle}_{\chi_{u}(\lambda, \ell)} \\
& =2 \sum_{r \in \mathbb{Z}} P_{w}^{(u)}(r, t) \delta(m-2 r) \quad(\ell \text { even })
\end{aligned}
$$

Step 1: exact determinant representation for generating function

$$
\chi^{(u)}(\lambda, \ell)=(2 \cos \lambda)^{\ell} \sqrt{\operatorname{det}\left(\frac{1-\tan (\lambda) \Gamma^{\prime}}{2}\right)} \text { known } 2 \ell \times 2 \ell \text { matrix }
$$

Step 2: multiple integral representation

$$
\ln \chi^{(u)}(\lambda, \ell, t)=\ell \ln (\cos \lambda)-\frac{1}{2} \sum_{n=1}^{\infty} \frac{(\tan (\lambda))^{n}}{n} \operatorname{Tr}\left[\left(\Gamma^{\prime}\right)^{n}\right]
$$

$\operatorname{Tr}\left[\left(\Gamma^{\prime}\right)^{n}\right]=\left(\frac{\ell}{2}\right)^{n} \int_{-\pi}^{\pi} \frac{d k_{1} \ldots d k_{n}}{(2 \pi)^{n}} \int_{-1}^{1} d \zeta_{1} \ldots d \zeta_{n-1} \mu(\vec{\zeta}) C(\vec{k}) F(\vec{k}) \exp \left(-i \ell \sum_{j=1}^{n-1} \frac{\zeta_{j}}{2}\left(k_{j}-k_{0}\right)\right)$
Step 3: asymptotics from multi-dim stationary phase approx and summing result over all n

Result:

$$
\ln \chi(\lambda, \ell, t) \approx \ell \log (\cos \lambda)+\frac{\ell}{2} \sum_{n=0}^{\infty} \int_{0}^{2 \pi} \frac{d k_{0}}{2 \pi} \Theta\left(\ell-2 n\left|v_{k}\right| t\right)\left[1-\frac{2 n\left|v_{k}\right| t}{\ell}\right] \sum_{m=0}^{n+1} \cos \left(2 m \varepsilon\left(k_{0}\right) t\right) f_{n, m}\left(\lambda, k_{0}\right)+\mathcal{C}
$$

$$
\begin{aligned}
f_{0,0}\left(\lambda, k_{0}\right) & =2 \ln \left(1+i \cos \Delta_{k_{0}} \tan \lambda e^{i \theta_{k_{0}}}\right) \\
f_{1,0}\left(\lambda, k_{0}\right) & =\ln \left[1-\frac{\sin ^{2} \Delta_{k_{0}} \tan ^{2} \lambda\left(\cos \theta_{k_{0}}+i \cos \Delta_{k_{0}} \tan \lambda\right)^{2}}{\left(\sin ^{2} \theta_{k_{0}}+\left(\cos \theta_{k_{0}}+i \cos \Delta_{k_{0}} \tan \lambda\right)^{2}\right)^{2}}\right] \\
f_{2,0}\left(\lambda, k_{0}\right) & =\ln \left[1+\frac{\sin ^{4} \Delta_{k_{0}} \tan ^{4} \lambda \sin ^{2} \theta_{k_{0}}\left(\cos \theta_{k_{0}}+i \cos \Delta_{k_{0}} \tan \lambda\right)^{2}}{\left(\left(\sin ^{2} \theta_{k_{0}}+\left(\cos \theta_{k_{0}}+i \cos \Delta_{k_{0}} \tan \lambda\right)^{2}\right)^{2}-\sin ^{2} \Delta_{k_{0}} \tan ^{2} \lambda\left(\cos \theta_{k_{0}}+i \cos \Delta_{k_{0}} \tan \lambda\right)^{2}\right)^{2}}\right] \\
f_{0,1} & =-i \tan \Delta_{k_{0}} \ln \left[\frac{1+i e^{i \theta_{k_{0}}} \cos \Delta_{k_{0}} \tan \lambda}{1+i e^{-i \theta_{k_{0}}} \cos \Delta_{k_{0}} \tan \lambda}\right], \\
f_{1,1} & =\tan \Delta_{k_{0}}\left(i \operatorname { l o g } \left[\frac{1+i e^{i \theta_{k_{0}}} \cos \Delta_{k_{0}} \tan \lambda}{\left.\left.1+i e^{-i \theta_{k_{0}} \cos \Delta_{k_{0}} \tan \lambda}\right]-\frac{4 \cos \Delta_{k_{0}} \tan \lambda \sin \theta_{k_{0}}}{\sin ^{2} \theta_{k_{0}}+\left(\cos \theta_{k_{0}}+i \cos \Delta_{k_{0}} \tan \lambda\right)^{2}}\right)+\mathcal{O}\left(\sin ^{3}\left(\Delta_{k_{0}}\right)\right)}\right.\right.
\end{aligned}
$$

$$
e^{i \theta_{k}}=\frac{h-e^{i k}}{\sqrt{1+h^{2}-2 h \cos k}} \quad \varepsilon(k)=2 J \sqrt{1+h^{2}-2 h \cos (k)} . \quad v_{k}=\frac{d \epsilon(k)}{d k}
$$

$$
\cos \Delta_{k}=4 \frac{h h_{0}-\left(h+h_{0}\right) \cos k+1}{\varepsilon_{h}(k) \varepsilon_{h_{0}}(k)}
$$

How well does this work?

\rightarrow Compare to numerically exact results.

Slight caveat: when $\chi^{(u)}(\lambda, \ell, t)$ becomes very small as a fn of λ our approximation becomes poor. Not a problem for getting the PD.
"Transverse field quench": prepare system in GS of H(ho), time evolve with $H(h)$

$$
h_{0}=3, h=0.2
$$

even/odd structure that washes out over time

Summary

1. PD for subsystems can reveal interesting physics; can be universal at critical points.
2. PD are not easy to calculate analytically.
3. Analytic results for PD of transverse subsystem magnetisation in TFIM after QQs
4. Order parameter after Neel quench in $X X Z$: interesting regime after melting of LRO
5. Other results: PDs in ground states of critical $X X Z$ chain and Hubbard model.
6. Long-range spin chains/"Kitaev models": Floquet; formation of order;...
