
Spatio-temporal quenches for fast preparation of 
ground states of critical models 

Kartiek Agarwal 
KITP Workshop “Dynamics of Quantum Information” 

Aug. 23, 2018 

 

 

In collaboration with: Ravin Bhatt, Shivaji Sondhi, Matteo Ipolitti, Prahar Mitra (IAS) 
 K. Agarwal, R. N. Bhatt, and S. L. Sondhi, Phys. Rev. Lett. 120, 210604 

P. Mitra, M. Ipolitti, R. N. Bhatt, S. L. Sondhi, K. Agarwal (to be out on ArXiv soon)  

U.K. 
Foundation   



Central Question 

Classical Product State-ish 
Easy to Prepare 

Ground state of some Gapped  
Hamiltonian 

Low entanglement 

Entangled State 
Ground state of some Gapless  

Hamiltonian 

What is the optimal way of performing such a transformation (with local operations)? 



Adiabatic Approach 



Adiabatic Approach is slow 

To maintain Adiabaticity: 



Adiabatic Approach is slow 



• Bang-Bang Protocols (Pontryagin Theorem) 

 

 

Minimize:  

Initial State: 

Given: 

• If Hamiltonian is linear in g, solution is bang-bang. (Yang et al., PRX 
7, 021027) 
– Greatly constraints the search for optimal protocols, which is nice. 
– The bang-bang is particularly useful for small systems. (moving majoranas, 

Gmon qubits, a few spins…) 
– But the protocols have to be determined numerically and often provide 

little intuition as to their guiding principles.  
 

Non-adiabatic protocols: I 



• Counter-diabatic or transitionless driving 

 

Variational ansatz/ local CD driving:  
D. Sels, A. Polkovnikov , PNAS, Volume 114, 20 (2017) 

Non-adiabatic protocols: II 



Non-Adiabatic Protocols: An alternative 
approach. 

 
Maxim: Be not afraid to create excitations. But shepherd them wisely. 

Intuition: Use symmetries exhibited by states 
Focus in this talk: Relativistic/Lorentz Symmetry  

 



Why relativistic models?  

• Quantum Criticality in 1+1D or 2D: Conformal Field Theory 

which includes relativistic symmetry 

– One dimensional Systems of interacting fermions, bosons, gapless spin 
chains---Luttinger Liquids.  

 

 

 

• Criticality in higher D: often associated with 
Goldstone modes described by 
– Example of interest: Half-filled Hubbard Model 

Effective speed of light `c’, nothing to do with the real speed of light  



Solution: Optimal Procotol 

This is an entire class of quench protocols (delineated by       ) for which the system  
relaxes to the ground state after the quench in time                    .  
 
The limit                   is the most optimal among these. At any fixed time, the system is 
in the ground state of the CFT in the “red” space-time region.  



Superluminal Fronts 



Basis for solution: Intuitive analysis of a moving 
front 

Initial state:                 vacuum of the massive theory 



Basis for solution 

The Shepherding of Excitations 

1. The vacuum state is invariant under Lorentz transformations 

2. The quench front occurs at a fixed time in a Lorentz Boosted frame.  
This frame is moving at speed                      with respect to the lab frame.    

Boosted Frame 

By itself, this chirality does not do anything: if any point point in space, we have hot  
and cold movers, it will not lead to physical separation of hot and cold regions.   

Laboratory Frame 



Basis of solution 

The Shepherding of Excitations 

By itself, this chirality does not do anything: if any point point in space, we have hot  
and cold movers, it will not lead to physical separation of hot and cold regions.   

But! A boundary changes everything.  

Region only populated 

by COLD left-movers  HOT 



How to solve 

Massless dynamics 

Massive dynamics 



Invariant inner product 

Can be evaluated at any space-like hypersurface:  

1. Normalizing a complete set of modes according to the Klein-Gordon inner product assures 
that the field operators satisfy the correct commutation relations 
2. One can expanding a given set of modes in terms of another set of modes using this inner 
product. Importantly, the modes will automatically satisfy the continuity conditions on the  
Amplitude and its space/time derivates 



Chiral Excitation: Result for finite vs and   

Right Mover: 
 
 
Left Mover:   

Right Movers 
Left Movers 

Instantaneous Case:  

1D finite  us Case:  



Cooling in dimension d=1 

The exact energies agree with the  
theoretical prediction 

One gets a picture of “heat waves”.  
(Agarwal et al., PRB 2017) 

 
These waves travel left (x = -t), right (x = t) with 

energies that are different in perpetual  
non-equilibrium motion/steady state.  



Cooling in higher dimensions 
 

No distinction between “hot” and “cold” regions.  
 
Classical Doppler Effect: No rare-faction/dilation for perp. light.  
 
Relativistic Doppler Effect:  A factor of         red-shifts all 
light regardless of directionality.   
 
 

The bulk of the  
radiation is perpendicular, in 
higher dimensions. 
 
But due to relativistic effects,  
it is cold too.  



Cooling for Bosons: higher dimensions 

3

FIG. 2. (a) The energy density as a funct ion of posit ion at the end of the quench from numerical simulat ion of the problem in

d = 2 is compared to the result of Eq. (3). (b) ✏t h . is plot ted for us = { 0, 0.4, 0.6, 0.8, 0.8} ; inset is the minimum value of ✏t h .

(as a funct ion of posit ion) plot ted as a funct ion of us for d = { 1, 2, 3} . (c) ✏t h . is plot ted for us = 0.5 for d = { 1, 2, 3, 1 } .

this Doppler shift of orthogonally emit ted radiat ion is a
purely relat ivist ic e↵ect .

Energy density after quench. To calculate the full
space- and t ime-dependence of the energy density in the
system, slow t ime-dependent correlat ions cannot be ne-
glected. Their e↵ect however can be captured using a
simple physical picture of ‘heat waves’ as described in
Ref. for d = 1, but which we find to be valid gener-
ally. In part icular, excitat ions emanate from the quench
front , carrying an energy ! k Nk depending on their di-
rect ion. The energy density at any point in space-t ime
is given by the average energy of all excitat ions ema-
nat ing from the quench front and ending at this point .
These ideas are empirically verified in Fig. (??) of the
supplemental material (SM). Here we focus on the as-
pect of ‘cooling’ and calculate the energy density at the
t ime the quench ends, tq. First , note that the energy
carried by waves emit ted in the ✓direct ion is given

by ✏✓ /
Rm / ⌘(✓)

kd− 1dk ! k Nk / m
4

1
⌘(✓)d + 1

1
L d

m
, where

L d
m = (m/ c)d has dimensions of volume. Higher mo-

menta modes yield a parametrically similar cont ribu-
t ion. (Note that UV divergences occur for d ≥ 3 but
these are absent for finite ⌧.). In d = 1, ✏t h.(x) =
1
⌘2

0

⇥(− x + ct) + 1
2

⇣
⌘2
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⌘
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where sind− 2 ✓is the appropriate angular measure in di-
mension d > 1. Some features of the energy density in
di↵erent dimensions is shown in Fig. ??. Important ly, a
thermodynamically large port ion is always observed to
become infinitely cold as vs ! c+ .

Infinite accuracy. The above discussion assumed the
limit L ! 1 to find the energy of excitat ions being em-
anated in di↵erent direct ions; dist inct ion between ‘left ’
and ‘right ’ are not valid for modes with momenta⇠ 1/ L .

The populat ion of these modes is instead found to scale
as Nk = m

4γs
. Important ly, a) this populat ion goes to zero

as vs ! c+ and b) it can be shown that this result is not
a↵ected by finite L (a technical discussion and numerical
confirmat ion is presented in SM). Thus, the populat ion
of the lowest momentum modes can be tuned arbit rarily
close to zero in our protocol, a facet that will be impor-
tant to compare with the adiabat ic protocol we discuss
next .

Adiabatic Cooling: Solution for finite ⌧, vs = 1 . In
this case, the quench occurs uniformly in space, but on
some t ime-scale⌧. The t ime-dependent equat ions of mo-
t ion can be solved exact ly for fixed momenta to find two
complete sets of modes uad.

k and vad.
k that behave like the

massless and massive modes uk and vk at t = 1 and
t = − 1 respect ively. Thus, one can assume to be ini-
t ially in the ground state with respect to quanta bad.

k of
the modes vad.

k . The populat ion of the quanta aad.
k of the

modes uad.
k ,
D

a
†ad.
k aad.

k

E
, can be found exact ly once βk in

aad.
k = ↵k bad.

k − βk b
†ad.

(− k x ,k ? )
is determined. We find

N ad.
k = |βk |

2
=

sinh2 ⇡
2
⌧(⌦k − ! k )

sinh (⇡⌧! k ) sinh (⇡⌧⌦k )

k⌧⌧− 1

−! e− 2⇡ ! k ⌧.

(4)
One can easily check that to obtain an energy density
✏(x) ⇠ e− L in this adiabat ic protocol, the t ime required
scales as ⌧ad. ⇠ O(L 2). Thus, our proposed diabat ic
protocol which takes t ime ⇠ O(L ) is clearly faster and
moreefficient than theadiabat ic protocol (which doesnot
produce a state arbit rarily close to the ground state).

Bosons vs fermions. We note that the fundamental
conclusions above are not changed for relat ivist ic the-
ories with di↵erent stat ist ics. We examine this in the
context of free relat ivist ic fermions in d = 1, governed
by the act ion L f = i  ̄ @µγ

µ  − m ̄  f [(x − vst) / (vs⌧)].
We again calculate the results for ⌧= 0, finite vs by
performing an appropriate mode expansion in terms of
massive and massless before and after the quench, re-
spect ively, and matching the spinor components at the

3

FIG. 2. (a) The energy density as a funct ion of posit ion at the end of the quench from numerical simulat ion of the problem in

d = 2 is compared to the result of Eq. (3). (b) ✏t h . is plot ted for us = { 0, 0.4, 0.6, 0.8, 0.8} ; inset is the minimum value of ✏t h .

(as a funct ion of posit ion) plot ted as a funct ion of us for d = { 1, 2, 3} . (c) ✏t h . is plot ted for us = 0.5 for d = { 1, 2, 3, 1 } .

this Doppler shift of orthogonally emit ted radiat ion is a
purely relat ivist ic e↵ect .

Energy density after quench. To calculate the full
space- and t ime-dependence of the energy density in the
system, slow t ime-dependent correlat ions cannot be ne-
glected. Their e↵ect however can be captured using a
simple physical picture of ‘heat waves’ as described in
Ref. for d = 1, but which we find to be valid gener-
ally. In part icular, excitat ions emanate from the quench
front , carrying an energy ! k Nk depending on their di-
rect ion. The energy density at any point in space-t ime
is given by the average energy of all excitat ions ema-
nat ing from the quench front and ending at this point .
These ideas are empirically verified in Fig. (??) of the
supplemental material (SM). Here we focus on the as-
pect of ‘cooling’ and calculate the energy density at the
t ime the quench ends, tq. First , note that the energy
carried by waves emit ted in the ✓direct ion is given

by ✏✓ /
Rm / ⌘(✓)

kd− 1dk ! k Nk / m
4

1
⌘(✓) d + 1

1
L d

m
, where

L d
m = (m/ c)d has dimensions of volume. Higher mo-

menta modes yield a parametrically similar contribu-
t ion. (Note that UV divergences occur for d ≥ 3 but
these are absent for finite ⌧.). In d = 1, ✏t h.(x) =
1
⌘2

0

⇥(− x + ct) + 1
2

⇣
⌘2

0 + 1
⌘2

0

⌘
⇥(x − ct); thus, the energy

density goes to zero for x < ct . Using the picture in
Fig. ??, we find for d > 1,

✏ss. (x, tq) =

R✓x

0
sind− 2 ✓✏✓+

R⇡ − ✓x

0
sind− 2 ✓✏✓

R⇡
0

d✓sind− 2 ✓
,

✓x = Re cos− 1

✓
− (x + L/ 2)

usL

◆

. (3)

where sind− 2 ✓is the appropriate angular measure in di-
mension d > 1. Some features of the energy density in
di↵erent dimensions is shown in Fig. ??. Important ly, a
thermodynamically large port ion is always observed to
become infinitely cold as vs ! c+ .

Infinite accuracy. The above discussion assumed the
limit L ! 1 to find the energy of excitat ions being em-
anated in di↵erent direct ions; dist inct ion between ‘left ’
and ‘right ’ are not valid for modes with momenta⇠ 1/ L .

The populat ion of these modes is instead found to scale
as Nk = m

4γs
. Important ly, a) this populat ion goes to zero

as vs ! c+ and b) it can be shown that this result is not
a↵ected by finite L (a technical discussion and numerical
confirmat ion is presented in SM). Thus, the populat ion
of the lowest momentum modes can be tuned arbit rarily
close to zero in our protocol, a facet that will be impor-
tant to compare with the adiabat ic protocol we discuss
next .

Adiabatic Cooling: Solution for finite ⌧, vs = 1 . In
this case, the quench occurs uniformly in space, but on
some t ime-scale⌧. The t ime-dependent equat ions of mo-
t ion can be solved exact ly for fixed momenta to find two
complete sets of modes uad.

k and vad.
k that behave like the

massless and massive modes uk and vk at t = 1 and
t = − 1 respect ively. Thus, one can assume to be ini-
t ially in the ground state with respect to quanta bad.

k of
the modes vad.

k . The populat ion of the quanta aad.
k of the

modes uad.
k ,
D

a
†ad.
k aad.

k

E
, can be found exact ly once βk in

aad.
k = ↵k bad.

k − βk b
†ad.

(− kx ,k ? )
is determined. We find

N ad.
k = |βk |

2
=

sinh2 ⇡
2
⌧(⌦k − ! k )

sinh (⇡⌧! k ) sinh (⇡⌧⌦k )

k⌧⌧− 1

−! e− 2⇡ ! k ⌧.

(4)
One can easily check that to obtain an energy density
✏(x) ⇠ e− L in this adiabat ic protocol, the t ime required
scales as ⌧ad. ⇠ O(L 2). Thus, our proposed diabat ic
protocol which takes t ime ⇠ O(L ) is clearly faster and
moreefficient than theadiabat ic protocol (which doesnot
produce a state arbit rarily close to the ground state).
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conclusions above are not changed for relat ivist ic the-
ories with di↵erent stat ist ics. We examine this in the
context of free relat ivist ic fermions in d = 1, governed
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We again calculate the results for ⌧= 0, finite vs by
performing an appropriate mode expansion in terms of
massive and massless before and after the quench, re-
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d > 1: No sharp distinction between 
odd and even waves.  

d = 2:  
But as v->c, cooling becomes 

 just as good.  



Some other points:  

Cooling protocol in free fermions 
manifests as chirally controlled  
“chemical potential” as opposed to 
an effective temperature.  
 
 
 
 
 
One can also solve exactly for the adiabatic  
Protocol in the Gaussian theory for the case: 
 
An exponentially small final energy density  
requires a time ~ O(L2).  
 
 



Application to “real” world model 

• What is the role of interactions? Does it totally spoil the 
effect? 

 

 

 

 

 

 

 

 

• What is the role of UV cut-offs that break the Lorentz-
invariance? 

 

Alarming: Total energy generated in the quench process (1D) is  

Independent of the quench speed!  

Which means that all cooling is due to spatial segregation and could be spoiled by interactions!   



Solution: Adiabaticity + Supersonic Quench 

New Quench Protocol:  

Quench is homogeneous in boosted frame:  

Again, calculate excitations in Lorentz-boosted frame: 
 
 
Then Doppler-shift the momenta to get populations in the laboratory frame.  

Effective time-scale is  

Cut-off is dependent on           , not just      .   



Time-Scale + Adiabatic Quench 

Cut-off for excitations  
is controlled by  

The total energy dumped in the entire  
quench process now scales to zero as  
 

1. The supersonic quench ENHANCES adiabatic effects 
2. The TOTAL energy dumped into the system is reduced -> good for interacting systems.  
3. The UV EFFECTS can be addressed by simply choosing a large enough  



Cooling extended to general CFTs. 
Dilation cooling 



Cooling is a purely geometrical effect. 

Translations in                             is an isometry of Minkowski space-time. 

Its just the Lorentz boost:  

Thus, vacuum two-point correlations must be functions of                    and 
one-point correlations, such as stress-energy tensor must be independent of  

Thus, this is a symmetry of the pre-quench QFT, post-quench CFT,  
and the quench-trajectory  

Tracelessness further implies the form:  

Where A, B are functions of        only.     



Cooling is a purely geometrical effect. 

If we further assume parity symmetry,  

Conservation further implies:                           ,  

Thus,  



Cooling is a purely geometrical effect. 

1. Thus, as                     , the hyperbola becomes a perfect lightcone `V’,  
a symmetric copy of the perfect luminal quench considered previously.  
The energy density goes to zero everywhere except on the light-cone! Thus,  
despite interactions, the previous picture holds. 
 
2. Even finite         is a useful protocol; because eventually, energy density 
for finite x tends to zero everywhere (except lightcone) as ~1/t^2.  

1. Momentum in `x’ direction ~ 
2. `Volume’ element in `x’ direction ~ 

 
3. Energy Density: d = 1:  



Argument for cooling in higher d 

• The stress-energy tensor is unfortunately not constrained by symmetry 
arguments and conservation laws alone.  
 

• If we constrain the stress-energy tensor to be isotropic in space (which is hard 
to assume in this setting), say due to interactions, at late times, then we can 
constrain the stress-energy tensor and it predicts cooling as  
 

• The Gaussian theory does exhibit cooling in higher d.  



t-DMRG Simulations on the Heisenberg model.  

The competitive advantage of the Lorentz cooling protocol should get better with L 

The initial state is ~20% of the band-width above the ground 
state of the gapless model. The final state is  
~0.62% above G.S. 
 
A linear `adiabatic’ ramp taking the same time produces a state ~2.4% above G.S. 
 



t-DMRG Simulations on the Heisenberg model.  

Expectation: Avg. Energy Density 
 
 
Cold region energy density  
 
 
 
Middle half system should have energy 
density somewhere in between 
  



Can we use this to create low-energy states in 
the Hubbard model in cold atoms? 

Weitenberg et al., Nature 2011 For Bosonic Mott insulator:  

1. Create a fermionic Mott insulators in DEEP wells 
 
 
 

1.  Single site addressing allows one to flip spins and create 
a classical Neel state. ~classical Neel state preparation 

 
 

3. Perform hyperbolic quench/enhance tunneling.  
 

(Alternately, can create a local mass by dimerization…) 

Labs of T. Esslinger, W. Bakr, M. Greiner, M. Zwielein, I. Bloch 



Conclusions 

• Space-time quenches can be used to create ground states of critical 
theories parametrically faster than adiabatic methods.  

 

• Argument is extremely general for d = 1 where hyperbolic quenches 
are shown to be optimal.  

 

• One can also start from excited states (at least in the Gaussian case) 
and show that the quench protocol generates no entropy except at 
the singular lines x = +/- t.  

 

• It would be great to numerically study such quenches in higher 
dimensions.  

 

 


