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Big Questions: \Which problems can we study with ML that we can’t do otherwise?
Can ML lead to the discovery of new physics?
What's ML's most appropriate physics application as a toolbox?
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What is Reinforcement Learning?

action={left, stay, right}
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Machine Learning

—» Supervised Learning learning topological phases in experiment

« labelled data { (7, )} A
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upervised Learning

labelled data

find approx. model which
generalizes beyond fitting

—» Unsupervised Learning

e find approx. probability distr.
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unlabelled data {z}

which generates the data
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Machine Learning

Unsupervised Learning
* unlabelled data {x}

e find approx. probability distr.
which generates the data

visualize glassy (control) transitions

1=2.3

1T=2.5
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A. Day, M.B., et al, arXiv:1803:10856
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Machine Learning

visualize glassy (control) transitions

1=2.3

1T=2.5

—» Unsupervised Learning
* unlabelled data {x}

e find approx. probability distr.
which generates the data

reviews: ML in physics

Dunjko and Briegel: ML & Al in the Quantum Domain,
Rep Prog Phys 81 074001 (2018)

P. Mehta, M.B., et al: High Bias, Low-Variance Intro to ML for Physicists,

arXiv: 1803:08823 (2018)
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Machine Learning

environment
(0,0 (1)) = HIR(1)]|¥(t))

available
actions

D
agent W ©
& _—Chooses action —~y
e}
—> Reinforcement Learning ,ﬂ.a % feedback loop

JE°
e agent learns strategy by \/
interactions with its environment gets reward ___changes state

* probability which generates the learning
data changes with time due to interaction with the environment

Marin Bukov



-xamples of RL Applications

outside physics

video games board games locomotion
Mnih et al, Nature (2015) Silver et al, Nature (2016) Lillicrap et al, arXiv:1509:02971
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-xamples of RL Applications

outside physics

video games board games locomotion
Mnih et al, Nature (2015) Silver et al, Nature (2016) Lillicrap et al, arXiv:1509:02971
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Reddy et al, PNAS 113 4877 (2016) Colabrese et al, PRL 118 15004 (2018) M.B. et al, PRX 8 0311086 (2018)
Fossil et al, PRX 8 031084 (2018)

-

in phySics August et al, arXiv:1802.04063

and more: design of molecular properties,

Marin Bukov qguantum optics experiment deS|gn, elc.



The RL Formalism

environment

available (cer Lo —)
. _ 10:p(t)) = HIh(t)]|v(2))
—>» RL formalism actions N —
agent QW
* state space S & _—chooses action ~~y
e reward space R ~
W\ changes state |

Marin Bukov Sutton and Barto, Reinforcement Learning: an Introduction, MIT press



—» RL formalism
e state space S
e action space A

* reward space R

The

RL Formalism

available
actions

/% feedback loop
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—» RL as Markov decision process

@/
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—» RL formalism
e state space S
e action space A

* reward space R

The

RL Formalism

available
actions

agent
2 & _—chooses action ~y

,;:%—g‘@ feedback loop

environment
10:|0(t)) = H[h(b)] (1))
P
Y
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—» RL as Markov decision process

@/

—» episodic learning

Marin Bukov

e @ g, @
\ t+1 /v t+2 /v
-G -G

changes state |

Sutton and Barto, Reinforcement Learning: an Introduction, MIT press



agen IV

4 chooses actiop

available (o, L‘elnviiolr;n;elnt ()
The RL Problem (ot 0= HHORO
~—Chooses action

y{o=£‘(§ feedback loop

'

—» RL as Markov decision process

gets reward changes state
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available (o, L‘elnviiolr}n;)elnt ()
The RL Problem (ot 0 = HHO
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—» RL as Markov decision process

gets rewafd changes state

—» RL algos have modular structure:
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environment
available ((0u0(t)) = H[h()][ (1))
The RL Problem ho=sves
J’)j=gg feedback loop A/{
—> RL as Markov decision process R S 4
ets rewal cnanges state

CWSS/t.\ Riiq /K /‘\A

—» RL algos have modular structure:

 RL agent: decision-making algorithm to learn & improve the policy

w(als) probability distribution A x & — [0, 1]
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—» RL algos have modular structure:

: environment
available ((0u0(t)) = H[h()][ (1))
e rO el I l actions —
agent
2L —hooses actior—~| L\l ZJ

—» RL as Markov decision process

 RL agent: decision-making algorithm to learn & improve the policy
w(als) probability distribution A x & — [0, 1]
e environment: contains fixed state-action transition probabilities

p(s’|s, a) probability distribution S x S x A — [0, 1]
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: environment
available (i0uv:(t)) = HIR(®)]|¢(0))
e rO el I l actions —
agent
2 &~ —hooses action—| ’”7

533
%, feedback loop /
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gets revvard changes state
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—» RL algos have modular structure:

—» RL as Markov decision process

 RL agent: decision-making algorithm to learn & improve the policy
w(als) probability distribution A x & — [0, 1]
e environment: contains fixed state-action transition probabilities

p(s’|s, a) probability distribution S x S x A — [0, 1]

—» RL objective: find policy which maximizes the total expected return
from step ¢ onwards Gy = Riy 1+ -+ Ry

Rt—l—l — Zp(s/‘sta At)r(sla St7 At)

Marin Bukov Sutton and Barto, Reinforcement Learning: an Introduction, MIT press



Overview of RL Algorithms
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—» \alue lteration methods

» value function: expected total return under the policy 7 (a|s) from state s

UW(S) — anw(a|s) [Gt‘St — 5]

Marin Bukov Sutton and Barto, Reinforcement Learning: an Introduction, MIT press



Overview of RL Algorithms

Poli imijzati Dynamic Programmin
olicy Optlmlz\atlon y =z \9 g
R\ y'd A )
l Policy Gradients Policy Iteration Value Iteration

Evolutionary W d v

Methods | Actor-Critic Methods Q-Learning/SARSA

—» \alue lteration methods

» value function: expected total return under the policy 7 (a|s) from state s
UW(S) — anw(a|s) [Gt‘St — 5]
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Overview of RL Algorithms

Poli imijzati Dynamic Programmin
olicy Optlmlz\atlon y =z \9 g
R\ y'd A )
l Policy Gradients Policy Iteration Value Iteration

Evolutionary W d v

Methods | Actor-Critic Methods Q-Learning/SARSA

—» \alue lteration methods

» value function: expected total return under the policy 7 (a|s) from state s
UW(S) — anw(a|s) [Gt‘St — 5]

* action-value (or Q-) function: expected total return under the policy m(als)
starting from state s and taking action a:

Qﬂ'(87 a) — ECLNTF(CL|S) [Gt‘st — S7At — CL]

—» optimal action-value function: ¢.(s,a) = max ¢, (s, a)

T« (als) = argmax_q. (s, a)
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Overview of RL Algorithms

Poli imizati Dynamic Programmin
olicy Optlmlz\atlon y =z \9 g
A y'd A )
l Policy Gradients Policy Iteration Value Iteration

Evolutionary W d v

Methods | Actor-Critic Methods Q-Learning/SARSA

—» Value lteration methods
» value function: expected total return under the policy 7 (a|s) from state s

UW(S) — anw(a|s) [Gt‘St — 5]

« action-value (or Q-) function: expected total return under the policy 7(a|s)
starting from state s and taking action a:
Gi = Rir1 + G

Qﬂ'(87 a) — ECLNTF(CL|S) [Gt‘st — S, Ay = CL]
—» optimal action-value function: ¢.«(s,a) = maxq,(s,a)
my(als) = argmax,g.(s, a)
Bellman’s equation: ¢« (s, a) Zp "Is, a { (s,5,a) + maxq.(s’,a’)
a/

Marin Bukov Sutton and Barto, Reinforcement Learning: an Introduction, MIT press



RL with Function Approximation

—» problem: state space has exponentially many configurations

e can we estimate values of not yet encountered states”?
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—» problem: state space has exponentially many configurations

e can we estimate values of not yet encountered states”?
—» YES, interpolate by parametrizing the Q-function/policy
q(s,a) — qo(s,a) m(als) — mo(als)

e typical approach: use deep neural network (Deep RL)

e caveat: RL algorithms have convergence guarantees only for
linear function approximators

* |ots of empirical tricks to combine Deep Learning and RL
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RL with Function Approximation

—» problem: state space has exponentially many configurations

e can we estimate values of not yet encountered states”?

—» YES, interpolate by parametrizing the Q-function/policy
q(s,a) — qo(s,a) m(als) — mo(als)

e typical approach: use deep neural network (Deep RL)

* caveat: RL algorithms have convergence guarantees only for
linear function approximators

* |ots of empirical tricks to combine Deep Learning and RL

—» examples of Deep RL:
* Tesauro’s Backgammon RL player (1992)
 DeepMind: Atari games, AlphaGo, etc.

e self-driving cars, autonomous drone/helicopter hovering, etc.

Marin Bukov Sutton and Barto, Reinforcement Learning: an Introduction, MIT press



RL and Optimal Control (OC)

—» different sides of the same medal
 RL: appeared first in behavioral psychology: decision making
* OC: appeared in optimization problem solving: variational calculus
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RL and Optimal Control (OC)

—» different sides of the same medal
 RL: appeared first in behavioral psychology: decision making
 OC: appeared in optimization problem solving: variational calculus

modern Control Theory: both RL and OC under same hood

'

currently in physics: preferred approach is OC

« for technical reasons: RL required large computational power, big data

" OC <— closely related —> RL
based on: variational calculus Markov decision processes
e needs model for environment e no model of controlled sys-
to express cost function in. tem, adaptive, autonomous.
e best suited for e stochastic/uncertain
deterministic environments. environments.
e differentiable cost function (), ® reward function can be
uses gradient descent. discontinuous, noisy.
¢ advantage: if we can compute ® figures out effective degrees
analytically derivative of (},. ~ of freedom without a model.

Marin Bukov



Why RL in Nonequilibrium Dynamics?

—» model-free: find effective control degrees of freedom (dof)
* microscopic descriptions have extensively many dof

Marin Bukov

cannot solve equations of motion

use (deep) RL to find guiding principles away from equilibrium?

RL can handle uncertain environments and learn policies
in the presence of various (correlated) sources of noise?
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—» adaptive: train on one env., use in a different env.

* Q-function contains knowledge about the environment which can be
used after training
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Why RL in Nonequilibrium Dynamics?

—» model-free: find effective control degrees of freedom (dof)

* microscopic descriptions have extensively many dof
e cannot solve equations of motion

* use (deep) RL to find guiding principles away from equilibrium?

 RL can handle uncertain environments and learn policies
in the presence of various (correlated) sources of noise?

—» adaptive: train on one env., use in a different env.

* Q-function contains knowledge about the environment which can be
used after training

 RL can reveal similarities between at first sight unrelated problems?

—» autonomous: does not require supervision
 RL can automate experimental setups?

e on-line: improve policy on-the-fly, i.e. before episode is over

Marin Bukov



RL Applied to Quantum State Preparation

feedback loop,
updates (s, a)
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RL Applied to Quantum State Preparation

feedback loop,
updates Q)(s, a)
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RL Applied to Quantum State Preparation

/ ENVIRONMENT \

H(t)=Ho+Ha (t)+ Heon (t)
;) : GS of Hy
2
feedback 100D, 1b«): target state
updates Q(s,a) | idsle(t)) = HO|(0)) t € [0,1y]

\/3 rewaxrolrz{O ;O§t<tf
K \(%W(t:tf)}\,t:tf/
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RL Applied to Quantum State Preparation

ENVIRONMENT

4 R

H(t)=Ho+Ha(t)+ Heon(t)
;) : GS of Hy

’ 14): target state
10|y (t)) = H(1)|(t)) t € [0, ]

,O§t<tf

0
reward r =

N

h(t)}

(|1 (t = t)) |2t = tj/

~Y



1 start from state sg = [h(0)]
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feedback loop,
updates (s, a)

RL Applied to Quantum State Preparation

ENVIRONMENT
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’ 14): target state
10|y (t)) = H(1)|(t)) t € [0, ]

reward r =

N

0 ,O§t<tf
‘2

~Y



feedback loop,
updates (s, a)

1 start from state sg = [h(0)]
take action ag : 0h = +4

—4]

RL Applied to Quantum State Preparation

ENVIRONMENT

4 R

H(t)=Ho+Ha(t)+ Heon(t)
;) : GS of Hy

’ 14): target state
10|y (t)) = H(1)|(t)) t € [0, ]

,O§t<tf

0
{\W*W(t =t5))|7t = tj/

h(t)

reward r =

N

go to state s1 = [h(0), h(dt)] = [—4, +4]
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1 start from state so = [h(0)] = [—4]
take action ag : 0h = +4

RL Applied to Quantum State Preparation

ENVIRONMENT

4 R

H(t)=Ho+Ha(t)+Hcon(2)
;) : GS of Hy

’ 14): target state
10|y (t)) = H(1)|(t)) t € [0, ]

0 ,O§t<tf

reward r = {

N

(|1 (t = t)) |2t = tj/

h(t)

go to state s1 = [h(0), h(dt)] = [—4, +4]

2 solve Schrodinger Eq. and obtain the QM state |y (dt))
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feedback loop,
updates (s, a)

1 start from state so = [h(0)] = [—4]

take action ag : 0h = +4

RL Applied to Quantum State Preparation

/ ENVIRONMENT \

H(t)=Ho+Ha(t)+ Heon(t)
;) : GS of Hy

’ 14): target state
109 (t)) = H(t)|(t)) t € [0, ]

0<t<t
reward r = - /

\_

go to state s1 = [h(0), h(dt)] = [—4, +4]

2 solve Schrodinger Eq. and obtain the QM state |y (dt))

3 calculate reward r
and use it to update (s, a)

0
{W*w(ttf)}?ttf/

which in turn is used to choose subsequent actions

Marin Bukov
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RL Applied to Quantum State Preparation

/ ENVIRONMENT \

H(t)=Ho+Ha(t)+Hcon ()
‘¢z> . GS of H()

feedback 100D, * |4.): target state
updates ()(s, a) 10 (1)) = H®)| () t € [0, ]

\/3 rewardr:{o ;O§t<tf
K \(%W(t:tf)}\,t:tf/

1 start from state so = [h(0)] = [—4] h(t) 5
. r=0
take action ag : 0h = +4 -
go to state s1 = [h(0), h(dt)] = [—4, +4]
2 solve Schrodinger Eq. and obtain the QM state |y (6t)) ;
Jd calculate reward r
and use it to update Q(s, a) L

which in turn is used to choose subsequent actions
Marin Bukov



RL Applied to Quantum State Preparation

feedback loop,
updates (s, a)

start from state s = [h(0)] = [—4]
take action ag : 0h = +4

go to state s1 = [h(0), h(dt)] = [—4, +4]

solve Schrodinger Eq. and obtain the QM state |y (dt))

calculate reward r
and use it to update (s, a)

which in turn is used to choose subsequent actions
Marin Bukov

/ ENVIRONMENT \

H(t)=Ho+Ha(t)+ Heon(t)
;) : GS of Hy

’ 14): target state
10|y (t)) = H(1)|(t)) t € [0, ]

reward r =

{O ,O§t<tf

N

h(t)

episode completed



problems:
—Pp state space exponentially big

—3 how do we choose actions?

Marin Bukov
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RL Applied to Quantum State Preparation

/ ENVIRONMENT \

H(t)=Ho+Ha(t)+Heon(t)
;) : GS of Hy

’ 14): target state
10| (t)) = H(t)|y(t)) ¢ € [0, ¢¢]

reward r =

\_

{O ,O§t<tf

problems:
—Pp state space exponentially big

RL ~ biased MC sampling
—Pp how do we choose actions?
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RL Applied to Quantum State Preparation

/ ENVIRONMENT \

H(t)=Ho+Har(t)+Hcon ()
‘¢z> . GS of H()

feedback 100D, * |4.): target state
updates ()(s, a) 10 (1)) = H®)w(®) ¢ € [0, ]

v rewaxrolrz{O ;O§t<tf
K \(%W(t:tf)}\,t:tf/

—Pp state space exponentially big

problems:

RL ~ biased MC sampling
—Pp how do we choose actions?

exploration exploitation dilemma

Marin Bukov



Example 1:
use RL to autonomously prepare
paramagnetic many-body states in a

nonintegrable spin chain

L
H(t)=—Y 87,157+ h.S; + ha(t)S*
j=1

—> initial |v;) and target |¢.) states are (paramag) GS at:
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Learning a Many-Body Protocol

| »
Loy !

h, € {4} bang-bang protocols

1‘1,...,L—1(°)
—

ent

e o005 (0 0 — 0 916
SEA=1(t=0.00)=0.01_F},(t=0.00)=0.216

e ward: episode completed
episode 0 )  E,(T)=0.35344

H=72 =575 —h.5; —hg(t)5]

J arXiv: 1705.00565 (2017)
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Learning a Many-Body Protocol

N

‘; ﬁ' 1‘1,...,L—1(') %
L 2 2 B E
hCE E {::4} bang_bang prOtOCC)lS _g.oo 025 050 075 1.00 125 150 @ 1.75

S '(f—()()())—()(m)ﬁ +=0.00)=0.216
Sert” (¢=0.00)=0.01 "F},(£=0.00) =0.216

\‘\\ ‘
| 27 :
= reward: episode completed
episode () 1) ]:“,,(_T.) —().35344

H=72 =575 —h.5; —hg(t)5]

J arXiv: 1705.00565 (2017)



Example 2:
use RL to autonomously prepare
Floguet engineered states in a simulation of an “experiment”

Challenges:

i N
— no direct access to quantum state: S
play game w/o looking at screen
“
.

— probabilistic quantum measurements
— uncertainty in preparing initial state
— occasional failure of control apparatus

—p additionally: all other problems of how to actually prepare
the state iIf the above were absent and no analytics is known

Marin Bukov



The Kapitza pendulum

—» Kapitza, 1951

—» paradigmatic example of Floquet engineering

Marin Bukov bluedwarf1127: YouTube (2009)



The Kapitza pendulum

—» Kapitza, 1951

—» paradigmatic example of Floquet engineering

Marin Bukov bluedwarf1127: YouTube (2009)



Floguet Engineering Control Problem

—» find optimal control field on top of periodic drive
Hrot (t) — HO + Hdrive (t) + Hcontrol(t)

A A?
Hirive(t) = —Z—Sign(cos Qt)|pg, sin O] 1 + e (1 — sign(sin €2t)) cos 26

m

2

Hy = ;—9 — muwg cos f H ontrol(t) = h(t)sin @ horizontal kicks

m
= 5t ]
<

9 T 21

Marin Bukov



Floguet Engineering Control Problem

—» find optimal control field on top of periodic drive
Hrot (t) — HO + Hdrive (t) + Hcontrol(t)

A A?
Hirive(t) = —Z—Sign(cos Qt)|pg, sin O] 1 + e (1 — sign(sin €2t)) cos 26
m
2
Hy= 20 muwg cos & H ontrol(t) = h(t)sin @ horizontal kicks

- 2m

initial state: |v;) : GS of Hj

target state: |¢).) inverted position eigenstate of Hg(2)
mwy = 1.00, A =2.00, €2 =10.00
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Floguet Engineering Control Problem

—» find optimal control field on top of periodic drive
Hrot (t) — HO + Hdrive (t) + Hcontrol(t)

A A?
Hirive(t) = —Z—Sign(cos Qt)|pg, sin O] 1 + e (1 — sign(sin €2t)) cos 26
m
2
Hy= 20 muwg cos & H ontrol(t) = h(t)sin @ horizontal kicks

- 2m
initial state: |¢;) : GS of Hj

target state: |¢).) inverted position eigenstate of Hg(2)

GOAL: find bang-bang protocol h(t) = h(jot) € {—4,0,+4}
suchthat  [1h(t = 0)) = 1), [p(t = t5)) = |¢)s)
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Floguet Engineering Control Problem

—» find optimal control field on top of periodic drive
Hrot (t) — HO + Hdrive (t) + Hcontrol(t)

A A?
Hirive(t) = —Z—Sign(cos Qt)|pg, sin O] 1 + e (1 — sign(sin €2t)) cos 26
m
2
Hy= 20 muwg cos & H ontrol(t) = h(t)sin @ horizontal kicks

- 2m
initial state: |v;) : GS of Hj

target state: |¢).) inverted position eigenstate of Hg(2)

GOAL: find bang-bang protocol h(t) = h(jot) € {—4,0,+4}
suchthat  [1h(t = 0)) = 1), [p(t = t5)) = |¢)s)

measure: quantum measurement of final state |Y(t = t¢))
along target state |1))

Marin Bukov



Let’'s give this game a try!

measurement: — 1
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Let’'s give this game a try!

measurement: — 1

measurement: +1

(different final state: different probability to be
in the target state)
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measurement: — 1

measurement: +1

(different final state: different probability to be
in the target state)

—p repeat protocol!

> measurement: +1
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Let’'s give this game a try!

measurement: — 1

measurement: +1

(different final state: different probability to be
in the target state)

—p repeat protocol!

> measurement: +1

> measurement: —1
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Let’'s give this game a try!

measurement: — 1

measurement: +1

(different final state: different probability to be
in the target state)

—p repeat protocol!

> measurement: +1

nondeterministic quantum measurements create headache!

> measurement: —1

Marin Bukov



Let's get rid of this ‘quantumness’ for a sec

—p repeat protocol again!

> measurement:
Fy = [(¢(T)|¢«)|* = 0.632

> measurement: F3 = 0.592

> measurement: Fj = 0.668

Marin Bukov



Let's get rid of this ‘quantumness’ for a sec

— repeat protocol again!

> measurement:
Fy = [(¢(T)|¢«)|* = 0.632

> measurement: Fj = 0.592

> measurement: Fj = 0.608

Marin Bukov



Let's maybe also fix the initial state

— repeat protocol again!

> measurement: Fy = 0.627

> measurement: Fj = 0.572

> measurement: F, = 0.657

Marin Bukov



Let's maybe also fix the initial state

— repeat protocol again!

> measurement: Fy = 0.627

> measurement: Fj = 0.572

control apparatus failed: it can’t be!

> measurement: F, = 0.657

Marin Bukov



he Cruel Reality:
all together (and probably much more!)

measurement: —1

measurement: 41

measurement: —1

measurement: —1
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he Cruel Reality:
all together (and probably much more!)

> measurement: —1

G measurement: +1

extremely tedious task!

measurement: —1

measurement: —1
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he Cruel Reality:
all together (and probably much more!)

> measurement: —1

G measurement: +1

extremely tedious task!

measurement: —1

how do we solve it efficiently?

measurement: —1
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he Cruel Reality:
all together (and probably much more!)

> measurement: —1

G measurement: +1

extremely tedious task!

measurement: —1

how do we solve it efficiently?

measurement: —1

can we automate it?

Marin Bukov



Reinforcement Learning

to Prepare the Inverted Position Floguet State
It 4 driving cycles (periods), 32 steps (8 per period)

h(t)

5 T 2T
Kapitza pendulum

t/T = 0.00, 6(t) = 0.007, py(t) = 0.00, r(t) = 0.00

periodic drive: ON

Amax/ (mwg) = 4.0 Q/(mwg) = 10.0 A/(mwgy) = 2.0

Marin Bukov



Reinforcement Learning

to Prepare the Inverted Position Floguet State
It 4 driving cycles (periods), 32 steps (8 per period)

h(t)

5 T 2T
Kapitza pendulum

t/T = 0.00, 6(t) = 0.007, py(t) = 0.00, r(t) = 0.00

periodic drive: ON

Amax/ (mwg) = 4.0 Q/(mwg) = 10.0 A/(mwgy) = 2.0
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IIIIIIIIIIIIIIIIIIIIII

Reinforcement Learning
to Prepare the Inverted Position Floquet State

)

:5t}

-+~
N—r
=

7 T

2T

15 driving cycles (periods), 120 steps (8 per period)

quantum Kapitza oscillator

t/T = 0.00

Marin Bukov hmax/(mwo) = 4.0

periodic drive: ON

F(ty) = 0.00689 {01 ()]

0.14

0.12

0.10

0.08

0.06
0.04
0.02

0.00

2/ (mwgy) = 10.0 A/(mwg) = 2.0
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Reinforcement Learning
to Prepare the Inverted Position Floquet State

)

:5t}

-+~
N—r
=

7 T

2T

15 driving cycles (periods), 120 steps (8 per period)

quantum Kapitza oscillator

t/T = 0.00

Marin Bukov hmax/(mwo) = 4.0

periodic drive: ON

F(ty) = 0.00689 {01 ()]

0.14

0.12

0.10

0.08

0.06
0.04
0.02

0.00

2/ (mwgy) = 10.0 A/(mwg) = 2.0



Outlook

web: mgbukov.github.io BERKELEY.

—» \Which problems can we study with RL that we can’t do otherwise?

—» (Can RL lead to the discovery of new physics?

—» What's RL's most appropriate physics application as a toolbox?

GORDON AND BETTY

wors MOORE

FOUNDATION

ML review with Jupyter notebooks: arXiv: 1803.08823
RL in non equilibrium dynamics : PRX 8 0311086 (2018), arXiv: 1808.08910
control phase transitions: PRA 97 052114 (2018), arXiv: 1803.10856

QuSpin: http://weinbe58.github.io/QuSpin
python package for ED & many-body dynamics (with P. Weinberg, BU)

Marin Bukov



