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Quantum quenches & thermalisation

. Quantum integrability in D=l

Free theories vs interacting integrable models

. Generalized thermalisation in transl. inv. systems

. Generalized hydrodynamics in inhomogeneous systems



I. Global Quantum Quenches

Simplest protocol for non-equilibrium dynamics

A. Many-particle system; Hamiltonian H.

B. Initial (lowly entangled) state |{(0)> that has non-zero
overlap with exponentially many (in system size) eigenstates of H

C. Time evolution [{(t)> = exp(-iH1t) [4(0)>

D. Study expectation values of local operators < (1) Oald(t)> in
the thermodynamic limit.

Def.: a local operator acts as the identity outside a finite spatial
region A in the infinite volume limit. Lattice spin models:

O, = ajf‘l...ajif where jkeA



Global quantum quenches deposit an extensive amount of

energy in the system:

. (PO)[H|Y©) .. (GS|H|GS)
1m > lim

L— o0 L L — o0 L

Probe physics far away from the GS.

For the time being focus on

A. Lattice models with finite local Hilbert spaces (e.g. lattice spins).

B. Hamiltonians + initial states invariant under translations.



II. Local relaxation after quantum quenches

Only consider local properties in
thermodyn. limit: A infinite, B finite

! lim lim (P(2)| Og | P(2)) existsV O §

i t—>o00 L—00

L— o0

Stationary values described by density matrix pss (not unique)

Physical Picture: A acts like a bath for B.



The system can never relax as a whole:

Expand in basis of energy eigenstates |n):

(@) = ) (n|PO)e ™ |n)

“Observable” O=0t= |1><2|+|2><1| does not relax:
<pDIOIY(H)> = A cos([Ei-E2]t+¢)

But this is a horribly non-local operator...



What determines pss ?

Only consider local operators =

Principle: in thermodyn. limit pss retains minimal possible amount

of local information (¥(0)| Oxz|¥(0)) on initial state



“Thermalization” Deutsch ‘91, Srednicki ‘94,....

Isolated system — energy conserved

YO)|H|WYO
o = lim L OEOD i o) 1, 1(0)) = tim (W) | ()

L — o0 L L—> L— o0

This is the minimal local info on the initial state that must be

retained; no other conserved quantities = system thermalizes

Stationary state described by e.g. micro-canonical ensemble

|E) any typical energy eigenstate at energy density eo



Nonequilibrium Steady States and Conservation Laws

Local conservation laws (=those with local densities) are clearly
important because

[H,I™] =0 = (Y |1"|¥P() time independent

Translational invariance = lim (¥(1) |1 |¥(¢)) time independent

L—>o0

) local ——lim (P(O) 1% %(0) = Tr sl

oss retains local information about initial state !

will not thermalize unless fine-tuned!



“Generalized Thermalization” Rigol et al ‘07

If we have additional conservation laws with local densities IV
the minimal local information that must be retained is

lim (¥(0) | 1% | W(0)) = Tr [pSSIIgp] — i

L— o0

What should the ensemble describing the steady state be?

lo) any typical simultaneous eigenstate of H and I™ with
eigenvalues Leo & L i™ (Generalized Micro-canonical Ensemble)

Cassidy et al ‘1
Caux&Essler '13



II. 1D Quantum Integrable Models

Definition 1: models with elementary excitations (generally not simply
related to microscopic DOF) that scatter purely elastically

/

pi PN

\ / / D1 - Py} E AP -+ P}

s
/o

Pr D PN

Sy X iYY pox
l/f(.xl, ...,XN) = elzj=1pj)cj W""b l//(.xl, ...,XN) = Z A(Q)e J=1pQ] J

Q€S,



Definition 2: models with extensive numbers of (quasi) local
integrals of motion.

M =0 = [JW Jm) (n) — (n)
[H 1™ =0=["1"], 1= )1

K

(quasi) local operators

For a spin-1/2 chain [ = Z 1j<n>
j

) _ (1)« (2) (3) a o
I f 0' 1 +fa1a2 J J+1 fa1a2a3 j 16j+16j—|—32 T & = 0%, 7,2

is quasi-local, if coefficients fgf@ ., decay fast enough

(exponentially) in k



|

Simplest integrable models are free theories, but they are
special: 3 basis s.t.

H =) e(®)y (kyk) [y(k), 7' (@)} = &y,
k
Problem separates into uncoupled harmonic oscillator modes
. 2
Quantization cond. (PBC) el =1, > k, = %n

Mode occ. # are conserved [y (k)y(k),H] = 0

and in 1-1 correspondence with local conservation laws.

In’remc’rlng m’regrable models are leFeren’r

' @ No simple notion of eigenmodes (in finite volume)

—

f

® Generically there are (hierarchies of) bound states (“strings” “



j=1
2-part. eigenstates: | ki, k) = Z W, xS STt 1)
X1 <Xy
Wave function: WX, X,) = ethixitikyx, 4 S(ky, ky) o tkixatikyx,
eik1+ik2 +1— zeik2
Sy, ky) = = ciki+iky 1 1 — ik
2
JL
Energy E = JZ [1 —cos(k)] — =z
j=1

L
Example: spin-1/2 Heisenberg ferromagnet [z JZ S, -

+1

o , | JNon-frivial quant. cond.
Periodic bes: | % - {— allowed values of ki
| '|depend on k: (interactions!)

This generalises to n parficles:

"Bethe ansatz equations”



A priori k; are complex

B

Tl Bl go To pole of scattering phase pikitica 1 | —2ethi =

X2>X1

Energy  E=Jll-coPl-7 -




Non-equilibrium steady states in free theories

C e N
Want thermodynamic limit N,L - o, — =0 fixed

— work with macro states

Hamiltonian: H="Y e®ytyk) [rtk).r(@} =6,
k
N
Energy eigenstates (finite L) [[r@pi0)
j=1

Define mode occ. de.ns.l’rY pp(k)L;Ak — # of p, in [kk+ AK
p,(k) by coarse graining:

2

I

'In the thermodyn. limit each function 0<n(k)<1l with

2r
dk |
— p,(k)=n  defines a macro state ]

= y
\®
S|



Mode structure: each mtm state either occupied ("particle”) or
empty (hole)

p(k) + pp(k) = 1 = pk)

Entropy (# micro states)

21 dk
S ~ LJ P [pt(k)ln[pt(k)] — p,(K)In[p,(k)] — ph(k)ln[ph(k)]]

0 T

Typical (max ent) state b = 1 Bose-Einstein/
at given energy density: P = " 5e + 1 Fermi-Dirac

()—j% (k)e(k)
) = 27rpp )



Stationary State affer Quantum Quenches

(1) Fix a macro-state pp(k) by requiring (mode occ.<=I1M)

lim (P(0) | 7" (k)y(k) |'F(0)) = p,(k)

L— o0

(2) Take a micro-state |®) corresponding to pp(K)

RigOl"OUS FQSUH'. Gluza et al 16



Relaxation to Stationary State

Driven by “excitations” over SS Caux&Essler ‘13

<\P(t) | @A | \P(t» = lim Z [e%‘b—%ﬂfﬂ(Ex_E@)t <)(| | > 4+ e%Q_%X—l(EX—Eq))t( | |)(>
L—oo P 2 |

e~ = (D |P(0)) T

e.g. particle-hole ex o o o o oo

¢

—o—v p &)

1) =7 (p)r(q) | D)

E, — Ep = e(p) — e(g) £ 19




Macro states in inferacting integrable theories

Starting point: quantisation conditions in large, finite L, e.q.

Aj rapidity variables
A+ i

A — i

el —

for XXX chain

Step 1: Need to deal with complex solutions (bound states)

® For large LN these do not correspond (precisely) to poles of S())

® Assume that deviations are negligible (“string hypothesis”) =
each bound state of « particles parametrised by a single
"centre-of-mass” rapidity AYER

® Bound states become like different species of particles



Quantisation conditions become

ePh= 1 S,07-23).j=1..N,,a=1,.

T (Bl)#(a.)) T

phase from taking phases acquired
bound state 4/ by scattering off
around ring all other particles

Energy and momentum SRS 2 6O s P= ) paA)

(n,a) (n,a)

Take logs | a a |
P pOOL =2l Y 0,05 =)

y :‘15_'); (ﬂ ’k)#(avj )

integer "quantum numbers”

e {4} & {/Ij} =2 wkl,._.,kN(xl, s Xy) -



Step 2: Macro states in thermodyn limit

In thermodyn limit

— can describe macro states by densities of particles/holes

PapA)dA =# of A in [A, 4+ Ad]

Complication: PapA) + P p(h) = po (4) # 1

— e ve____ o= # of vacancies in [1,4+ A]]
PoA)dA

® o OC"

depends on all other particles
because of interactions

® ® © A(:P‘




. . oyg o a _ a a __ ﬂ
Quantisation conditions — p,AOL =2xl"+ . 0,,4" - i)
(p.k)#(a.j)

Use 1%, -4%=0O(L™") to turn sums into integrals; massage

o | - oo 1 .
PapA) F+ Pan(d) = Po(4) — Z[ dA" Tog(A = A) pgp(A), WT, 54 = — id—/lln Ses(A)
| p=1 -

"Thermodynamic limit of Bethe ansatz equations”

System of linear integral eqns relating particle and hole densities.

Each set of positive functions {p,,(4),p,x(4)|a = 1,...} satisfying

the TLBAE defines a macro state.

—

Notations: | p)



Typical states at a given energy density

Energy/entropy densities of macro state | p’)

&)

e P Pan}] = ZJ A2 Py (A)eLA)

a=1 "7

S[{pa,p9 pa,h}] — Z J'd/1 [pa,t(ﬂ“)ln[pa,t(/l)] — pa,p(/i)ln[pa,p(/l)] _ pa,h(/l)ln[pa,h(ﬂ)]]

a=1

Typical state at e(T): maximise e-Ts wrt to P p(4)

Thermodynamic Bethe Ansatz (TBA) equations

| - o
P\ e & [ 2o\ |
In (1 + pap(/l)> =+ Y J di léa,ﬂé(ﬂ — 1)+ Ts(h - ;4)] In (1 + e H,

TBA equa’rlons and TLBAE ’roge’rher de’rermlne ’rhe s‘ra’re of ’rhermal
equilibrium.



“Excitations’ over Macro States

Let {47} be a micro state corresponding to | p’)

a — (04 a __ p
PLODL =27l + ) 0,50 — AP
(PR)#(a.))

Can make e.g. “particle-hole excitations”

- ol4|

’ ® . o ¢ : e - Lo
— — Yy = {17
° ® ° . 1::_4

T — )T a _ 3P
PLIOL =220+ Y 0,047 = 1)
(P.R)#(a.))



Excitation energy and momentum are additive!

E =8 U)-8& ", P=P ) —P (A"
« 27" rapidities of the particle/hole

« & (1), P (1) depend only on |p’)

——a—— j e — —— I T e

’ Macro state dependent quasi-particle picture! \

= = = e —

Correlations/entanglement are spread by these quasiparticles!

0% ,(2)
. o ol Bonnes, Essler,
Associated group velocities: RPN Rty ahliliis

oA
Alba& Calabrese '17



Summary of this part

® Integrable models have atypical finite-entropy macro states

® Described by sets of particle/hole densities for “fundamental”
particles and bound states

@® 3 stable quasiparticle excitations over each macro state; their

numbers and properties depend on the macro state



How to access atypical states? (they are very rare!)

® Energy eigenstates are also eigenstates of the (quasi) local
conservation laws I
@® Recall that by generalised thermalisation

lim lim (¥(1)| 05 ¥(0) = lim (o] 05| p)

00 L—>o0

lo) any typical simultaneous eigenstate of H and I™
with eigenvalues Leo & L i

Stationary states after quantum quenches are automatically
atypical, unless we fine-tune the initial conditions!

They are also interesting (different from thermal states). e.g. QDL.



How to construct the GMC after a QQ?

Let |p) be a micro state corresponding to | p’)

.1 ‘

known functions

o o
Initial conditions  lim 7(¥(OI™I¥(0) =i Must have i = i"

— — I = — — —— — s . = —

" @ Calculate i® (Minitial data”) — possible for simple matrix- 1

product initial states Fagotti&Essler 13
® Determine {Py o Panlad =1,...} from (1)  Ilievski et al ‘16

| @ Pgs= | ®)DP| where |®) is any micro state corresponding :
| to |7 ]

— — _ = = == e — —_—————



alternative way for special initial states: "Quench Action Approach”

Caux&Essler ‘13

Brockmann et al ‘14
Poszgay et al ‘14
Bertini et al ‘14

de Nardis et al ‘14



How to find the conservation laws?

Use connection between D-dim QM & D+1-dim classical Stat. Mech.

Vertex B .
: S R 1 o,
welgh’rs o | | o L a,

|
a b R | Partition fn
o G
b NS o
(L(p\>q1s ] o, a...a]
' § | | [z(w)]
o o, dy ol AL

z=y [L(M)]le’;1 [L(ﬂ)]g;--- = Tr [z(p)"]
| {aj},{aj’?...{aj},{;ai}.,.‘.

[z(), 7(4)] = 0




Heisenberg model<= 6-vertex model a,b=1,2 and «,3=1,2

Higher conservation laws: @ = - In [T%(M)]
//tl’l
H=Hq
These are “ultra-local” JEm) — Z 73
J.Jj+1,....j+n
j

But 3 much larger family of commuting ftransfer matrices: take
"auxiliary space” 25+1 dim

_ Kulish &
[TS(:M)’ TS’(/D] =0 Reshetikhin '83

n

In [Ts(ﬂ)]

H=HUs

Quasi-local conservation laws 1®" = dur

Ilievski, Medenjak
& Prosen ‘16



Bertini et al ‘16

Generalized Hydrodynamics

Castro-Alvarado et al

Translational invariant model with inhomogeneous initial state
{

Simplest setup

M

Basic idea: at late times a current-carrying NESS develops
along each ray x/t=t inside the light cone.

| O, acts non-trivially

!

| only around X

'16



Generalize ideas from homogenous case:

pss(&) described in terms of macro state {p, (&, 1), p,4(E )}

How to determine these macro states?

Use continuity eqgns for

i ] — i[H I(n)] — Jm _ g
dt ’ ] J '

j+1

currents

densities of cons. laws

Expectation values in the stationary states?



. : (n) — (n)
Homogeneous case: 1}1_)1210 (p IIJ. |p) = Z [d/l Pap(A) €57(4)

a

Inhomogeneous case:  lim (eI L pe) = > [d/l Pap(E:A) €50(A)

: (n) — (n)

¢

quasiparticle group velocities

This gives )’ Jd/l (1) [atpa,p(g, 1)+ 0, <vam(z) Pans z))] =0

a

"Completeness” of conservation laws =

GHD equations




Given some initial conditions (special states) these can be
intfegrated = description of the NESS.

lim TAVEIVAEDY

a [

- M1 ).} =
lim {p[J AEDY

a o

dA (& 7) €0 (2)

dA Va,|ﬁ>(/1) pa,p(ga /1) 66(171)(/1)

= profiles of current and charge densities.

Bertini et al
Doyon et al
Bulchandani et al



— Lot of progress in understanding non-equilibrium dynamics in

intfegrable systems
— Interesting physics (e.g. non-thermal NESS)

— Important differences between interacting and free theories



