Information propagation and entanglement generation with long-range interactions

Alexey V. Gorshkov
Joint Quantum Institute (JQI)
Joint Center for Quantum Information and Computer Science (QuICS)
NIST and University of Maryland

JOINT CENTER FOR QUANTUM INFORMATION and Computer Science

Apply for JQl postdoc fellowship (theory, expt) \& QulCS postdoc fellowship (theory)
KITP Program "The Dynamics of Quantum Information"
KITP
Sept 6, 2018

Motivation

Typical condensed matter systems:

- short-range interactions = finite range or exponentially decaying

AMO and other synthetic quantum systems:

- long-range $=$ not short-range (e.g. decaying as $1 / r^{\alpha}$)

Examples:

- $1 / r^{3}$: Rydberg or magnetic atoms, excitons, NV centers,
- $1 / r^{6}$: Rydberg atoms
 polar molecules
- $\sim 1 / r^{\alpha}$ \& other forms: ion crystals, atoms in multimode cavities or along waveguides

Motivation

- among the strongest \& most tunable interactions available in AMO
\Rightarrow ideal for studying strongly interacting quantum many-body physics

Examples:
e.g. Lev e.g. Abanin

- $1 / r^{3}$: Rydberg or magnetic atoms, excitons, NV centers, e.g. Lukin
- $1 / r^{6}$: Rydberg atoms
 polar molecules

- $\sim 1 / r^{\alpha}$ \& other forms: ion crystals, atoms in multimode cavities e.g. Rey
or along waveguides

Features of long-range interactions

- faster quantum state transfer, faster quantum computing, faster preparation of entangled states
- mask dimensionality [e.g. Peter, Müller, Wessel, Büchler, PRL 2012; Maghrebi, Gong, AVG, PRL 2017]
- unusual ground-state entanglement properties

$$
\begin{aligned}
& \text { [e.g.: Koffel, Lewenstein, Tagliacozzo, PRL } 2012 \\
& \text { Vodola, Lepori, Ercolessi, AVG, Pupillo, PRL 2014] }
\end{aligned}
$$

- ...

Long-range interactions: active research areas

- short-time dynamics after quench: speed limit?
- long-time dynamics after quench: thermalization? localization?
- topological phases in the presence of long-range interactions?
- new phases and phase transitions?
...

Today

- short-time dynamics after quench: speed limit?
- long-time dynamics after quench: thermalization? localization?
- topological phases in the presence of long-range interactions?
- new phases and phase transitions?

Lieb-Robinson bounds

- lattice in arbitrary dimension (draw 1D for simplicity)

observable A

$$
B^{\dagger} B=1
$$

- arbitrary initial state $|\psi\rangle \quad A(t)=e^{i H t} A e^{-i H t}$
- effect on A due to disturbance B :

$$
\begin{aligned}
& \left.\left|\langle\psi| B^{\dagger} A(t) B\right| \psi\right\rangle-\langle\psi| A(t)|\psi\rangle\left|=\left|\langle\psi| B^{\dagger} A(t) B-B^{\dagger} B A(t)\right| \psi\right\rangle \mid \\
& \left.=\left|\langle\psi| B^{\dagger}[A(t), B]\right| \psi\right\rangle|\leq \llbracket| B^{\dagger}[A(t), B] \square|\square|[A(t), B]| | \equiv Q(r, t)
\end{aligned}
$$

Short-range interactions

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
E. Lieb \& D. Robinson, 1972

Short-range interactions

$$
Q(r, t) \leq \mathcal{J}_{1}(r) t+\mathcal{J}_{2}(r) \frac{t^{2}}{2!}+\mathcal{J}_{3}(r) \frac{t^{3}}{3!}+\ldots
$$

E. Lieb \& D. Robinson, 1972

Short-range interactions

$$
Q(r, t) \leq \mathcal{J}_{1}(r) t+\mathcal{J}_{2}(r) \frac{t^{2}}{2!}+\mathcal{J}_{3}(r) \frac{t^{3}}{3!}+\ldots
$$

(kind of like a path integral, but all contributions positive)

short-range Lieb-Robinson bound

- signal after time t distance r away: $Q(r, t) \lesssim e^{v t-r}$
E. Lieb \& D. Robinson, 1972

- shortest time t to send quantum info over distance r is $t \gtrsim r$
- observed in cold atoms:

Cheneau et al (Bloch, Kuhr), Nature (2012)

short-range Lieb-Robinson bound

- signal after time t distance r away: $Q(r, t) \lesssim e^{v t-r}=\epsilon$
E. Lieb \& D. Robinson, 1972
$v \sim 1$

Short-range interactions

- shortest time t to send quantum info over distance r is $t \gtrsim r$

Applications:

- quantum communication through spin chains
- entanglement growth after quenches or under other (possibly time-dependent) unitary dynamics
- speed of quantum computers
- thermalization rates
- entanglement and correlations in gapped ground states
E. Lieb \& D. Robinson, 1972

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

Interested in:

- shape of causal region (or "light cone")
\rightarrow shortest time t to send quantum info over distance r is $t \gtrsim f(r)$

First theoretical work: Hazzard et al, 2013; Hauke \& Tagliacozzo, 2013; Schachenmayer et al, 2013; Knap et al, 2013; Juenemann et al, 2013; Eisert et al, 2013; Hazzard et al, 2014; Storch et al, 2015; Rajabpour et al, 2014, 2015, ...
First experiments: Richerme et al, Nature 2014; Jurcevic et al, Nature 2014

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

$$
\begin{aligned}
& H=\sum_{i<j} h_{i, j} \\
& \left\|h_{i, j}\right\| \leq \frac{1}{|i-j|^{\alpha}}
\end{aligned}
$$

- arbitrary time dependence allowed
- arbitrary time-dependent on-site terms allowed
- consider all $\alpha \geq 0$
(can include Kac normalization at the end if desired)

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

$$
Q(r, t) \leq \mathcal{J}_{1}(r) t+\mathcal{J}_{2}(r) \frac{t^{2}}{2!}+\mathcal{J}_{3}(r) \frac{t^{3}}{3!}+\ldots
$$

Hastings, Koma, Commun. Math. Phys. 265, 78I (2006)

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions Additional trick \#1:

- Hastings-Koma series bad at treating short-range physics
- work in interaction picture of $H^{\text {sr }}$
- choose optimal χ at the end
$\|[A(t), B]\|$

$$
\begin{aligned}
& A(t)=U_{I}^{\dagger}(t) A_{I}(t) U_{I}(t) \\
& A_{I}(t)=e^{i H^{\mathrm{sr}} t} A e^{-i H^{\mathrm{sr}} t} \\
& U_{I}(t)=\mathcal{T}\left(e^{-i \int_{0}^{t} d \tau H_{I}^{\mathrm{lr}}(\tau)}\right)
\end{aligned}
$$

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions Additional trick \#1:

- Hastings-Koma series bad at treating short-range physics
- work in interaction picture of H^{sr}
- choose optimal χ at the end
$\|[A(t), B]\|=\left\|\left[U_{I}^{\dagger}(t) A_{I}(t) U_{I}(t), B\right]\right\|$

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

 Additional trick \#1:

- Hastings-Koma series bad at treating short-range physics
- work in interaction picture of H^{sr}
- choose optimal χ at the end

$$
\|[A(t), B]\| \equiv Q(r, t) \leq \mathcal{J}_{1}(r) t+\mathcal{J}_{2}(r) \frac{t^{2}}{2!}+\mathcal{J}_{3}(r) \frac{t^{3}}{3!}+\ldots
$$

$$
\mathcal{J}_{1}(r)=\sum
$$

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions Additional trick \#1:

- Hastings-Koma series bad at treating short-range interactions
- work in interaction picture of $H^{\text {sr }}$
- choose optimal χ at the end

$$
\|[A(t), B]\| \equiv Q(r, t) \leq \mathcal{J}_{1}(r) t+\mathcal{J}_{2}(r) \frac{t^{2}}{2!}+\mathcal{J}_{3}(r) \frac{t^{3}}{3!}+\ldots
$$

$$
\mathcal{J}_{2}(r)=\sum
$$

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

 Additional trick \#2:

Two errors:

- ignore $A-C$ interactions
- Hamiltonians on $A B, B, B C$ don't commute

Both vanish as $\ell \rightarrow \infty$
For large ℓ, same scaling with ℓ $\underset{t \sim 1}{\text { error }} \lesssim \sum_{i \in A} \sum_{j \in C} \frac{1}{|i-j|^{\alpha}} \sim \frac{1}{\ell^{\alpha-2}}$

Tran, Guo, Su, Garrison, Eldredge, Foss-Feig, AVG, Childs, arXiv: I 808.05225 [Based on Haah, Hastings, Kothari, Low, arXiv: I 801.03922]

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions Additional trick \#2:

$$
\approx\left(U^{A B}\right)^{\dagger} U^{B}\left(U^{B C}\right)^{\dagger} O U^{B C}\left(U^{B}\right)^{\dagger} U^{A B}
$$

$$
=\left(U^{A B}\right)^{\dagger} O U^{A B}
$$

has no support on C !

$$
\begin{gathered}
\|[O(t), P]\| \approx 0 \\
\text { error } \\
\text { for } \sim \frac{1}{\ell^{\alpha-2}}
\end{gathered}
$$

Tran, Guo, Su, Garrison, Eldredge, Foss-Feig, AVG, Childs, arXiv: I 808.05225 [Based on Haah, Hastings, Kothari, Low, arXiv: I 80I.03922]

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

$$
\begin{aligned}
& \text { Additional trick \#2: } \\
& \begin{array}{ccc}
\left\|\left[O_{X}(t), O_{Y}\right]\right\|=\left\|\left[U_{t}^{\dagger} O_{X} U_{t}, O_{Y}\right]\right\| & =\left\|\left[\tilde{U}^{\dagger} O_{X} \tilde{U^{\prime}}, O_{Y}\right]\right\| & 0 \\
U_{t}^{\dagger} O_{X} U_{t} & \ell \sim r / t & \lesssim \frac{t^{\alpha-1}}{r^{\alpha-2}}=\epsilon \\
\Downarrow & \ell t<r & t \gtrsim r^{\frac{\alpha-2}{\alpha-1}}
\end{array}
\end{aligned}
$$

Tran, Guo, Su, Garrison, Eldredge, Foss-Feig,AVG, Childs, arXiv:I 808.05225

Lieb-Robinson-type bounds for $r^{-\alpha}$ interactions

~"shortest time t to send quantum info over distance r "

$D=$ dimension

$N=$ total number of sites
(formulas shown for $N \sim r^{D}$)
$\alpha=0$
$\alpha=\infty$
$t \gtrsim \frac{\log N}{N^{1-\alpha / D}} \quad \begin{gathered}D \\ \text { Hastings },\end{gathered}$
Guo et al, in prep
[improved over
$t \gtrsim \frac{\log N}{N}$ Starch et al (2015)] $\quad \mid$
Guo et al, in prep
$2{ }^{2}$ ¿ $r^{\frac{\alpha-2 D}{\alpha-D}}$
Tran et al, arXiv:I808.05225 \& Foss-Feig, Gong, Clark, AVG, PRL (2015)
$t \gtrsim r$
Lieb, Robinson (1972)

Applications

- local quenches A

$$
\left.\left|\langle\psi| B^{\dagger} A(t) B\right| \psi\right\rangle-\langle\psi| A(t)|\psi\rangle \mid
$$

Gong, Foss-Feig, Michalakis,AVG, PRL I I3, 030602 (2014)

- growth of connected correlations after a global quench

$$
\langle A(t) B(t)\rangle-\langle A(t)\rangle\langle B(t)\rangle
$$

Gong, Foss-Feig, Michalakis, AVG, arXiv:I40I.6I74v।

- correlations in gapped ground states fall off no slower than Foss-Feig, Gong, Clark, AVG, PRL II4, I5720I (2015)
- entanglement area laws for dynamics \& gapped ground states Gong, Foss-Feig, Brandão,AVG, PRL II9, 05050I (2017)
- more gate-efficient quantum simulation protocols

Tran, Guo, Su, Garrison, Eldredge, Foss-Feig, AVG, Childs, arXiv: I808.05225

Fastest known protocols

Shortest time t to send quantum info over distance r $1 / r^{\alpha}$ interactions in D dimensions $\quad N=$ total number of sites

Guo et al, in prep

 $t \sim \frac{1}{N^{1 / 2}}$$\downarrow t \sim \frac{1}{N^{1 / 2-\alpha / D}}$

$$
\alpha=0
$$

Eldredge, Gong, Moosavian, Foss-Feig, AVG, PR 119,170503 (2017)
(formulas shown for $N \sim r^{D}$)

Guo et al, in prep
$t \gtrsim \frac{\log N}{N}$
Lashakari et al, JHEP (2013)

State transfer over distance L in time $T \sim \log L$ using $1 / r^{D}$ in D dimensions
(e.g. $1 / r^{3}$ interactions between dipoles in $D=3$ dimensions)

- speed up quantum computing algorithms
- fast preparation of a wide range entangled states (e.g. prepare MERA [e.g. Haah \& toric codes] in $T \sim \log ^{2} L$) First show how to create GHZ state $|0 \ldots 0\rangle+|1 \ldots 1\rangle$ of linear size L in time $T \sim \log L$

1D with $1 / r$ interactions

(realized in trapped ions)

- use individual addressing to turn individual interactions on and off

| \circ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\|0\rangle+\|1\rangle$ | $\|0\rangle$ |

- \# of doubling steps

| \circ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\|00\rangle+\|11\rangle$ | $\|0\rangle$ | $\|0\rangle$ | $\|0\rangle$ | $\|0\rangle$ | $\|0\rangle$ | $\|0\rangle$ | | $\sim \log L$

- remains to show that each doubling step takes constant time
$|00000000\rangle+|11111111\rangle$

Eldredge, Gong, Young, Moosavian, Foss-Feig, AVG, PRL II9, I70503 (20I7)

1D with $1 / r$ interactions

$$
\hat{h}_{i j}=r_{i j}^{-1}\left(|0\rangle\left\langle\left. 0\right|_{i} \otimes \hat{I}_{j}+\mid 1\right\rangle\left\langle\left. 1\right|_{i} \otimes \hat{X}_{j}\right)\right.
$$

$$
t=\pi r_{i j} / 2 \Rightarrow \text { controlled-NOT }
$$

controlled (by qubit i) X rotation of qubit j

$$
\hat{H}=\sum_{i \in A, j \in B} \hat{h}_{i j} \quad \text { (all commute) }
$$

1D with $1 / r$ interactions

Need: controlled-NOT with any qubit in A as control \& every qubit in B as target.
$(|0\rangle+|1\rangle)_{A}|0\rangle_{B} \rightarrow|00\rangle+|11\rangle$
$\hat{I}=$ identity

$$
\hat{h}_{i j}=r_{i j}^{-1}\left(|0\rangle\left\langle\left. 0\right|_{i} \otimes \hat{I}_{j}+\mid 1\right\rangle\left\langle\left. 1\right|_{i} \otimes \hat{X}_{j}\right)\right.
$$

$$
t=\pi r_{i j} / 2 \Rightarrow \text { controlled-NOT }
$$

controlled (by qubit i) X rotation of qubit j

$$
\hat{H}=\sum_{i \in A, j \in B} \hat{h}_{i j} \quad \text { (all commute) }
$$

rotation rate $>$ (number of controls) \times (weakest coupling)

$$
=R \times \frac{1}{2 R}=\frac{1}{2} \quad \text { time to double independent of } R
$$

Eldredge, Gong, Young, Moosavian, Foss-Feig, AVG, PRL II9, I70503 (2017)

3D with $1 / r^{3}$ interactions

Eldredge, Gong, Young, Moosavian, Foss-Feig,AVG, PRL II9, I70503 (20I7)

3D with $1 / r^{3}$ interactions

Eldredge, Gong, Young, Moosavian, Foss-Feig,AVG, PRL II9, I70503 (20I7)

3D with $1 / r^{3}$ interactions

Eldredge, Gong, Young, Moosavian, Foss-Feig,AVG, PRL II9, I70503 (20I7)

3D with $1 / r^{3}$ interactions

Eldredge, Gong, Young, Moosavian, Foss-Feig,AVG, PRL II9, I70503 (20I7)

3D with $1 / r^{3}$ interactions

rotation rate $>$ (number of controls) \times (weakest coupling)

$$
\sim R^{3} \times \frac{1}{R^{3}} \sim 1 \quad \text { time to double independent of } R
$$

Eldredge, Gong, Young, Moosavian, Foss-Feig,AVG, PRL II9, I70503 (20I7)

State transfer over distance L in time $T \sim \log L$ 3D with $1 / r^{3}$ interactions

Eldredge, Gong,Young, Moosavian, Foss-Feig,AVG, PRL II9, I70503 (20I7)

Fastest known protocols

Shortest time t to send quantum info over distance r $1 / r^{\alpha}$ interactions in D dimensions $\quad N=$ total number of sites

Guo et al, in prep

$t \sim \frac{1}{N^{1 / 2}}$

$\alpha=0 \quad t \sim \frac{1}{N^{1 / 2-\alpha / D}} D / 2{ }_{D}^{\downarrow} t \sim 1 \underset{D}{\downarrow} t \sim r^{\alpha-D} \quad t \sim 1 \quad \alpha=r \quad \alpha=$
$t \gtrsim \frac{\log N}{N^{1-\alpha / D}}$
Gao et al, in prep
$t \gtrsim \frac{\log N}{N}$
Lashakari et al, JHEP (2013)

AVG, PRL II 9, I70503 (2017) for $N \sim r^{D}$)
$t \sim \log r$

$D \quad t \gtrsim \log r \quad 2 D$

$$
t \gtrsim r^{\frac{\alpha-2 D}{\alpha-D}}
$$

Hastings,
Korma (2006)
Tran et al, in prep \& Foss-Feig, Gong, Clark, AVG, PRL (2015)

$$
t \gtrsim 1
$$

Guo et al, in prep

Eldredge, Gong, Moosavian, Foss-Feig,
(formulas shown

- $|00 \ldots 0\rangle$ unchanged
$\bullet|10 \ldots 0\rangle$ and $|0\rangle \frac{|1 \ldots 0\rangle+\cdots+|0 \ldots 1\rangle}{\sqrt{N}}$
form a closed system and are coupled by $\sim \sqrt{N}$
so pi-pulse takes $t \sim \frac{1}{\sqrt{N}}$

All-to-all case: state transfer in time $t \sim \frac{1}{\sqrt{N}}$

$$
H=\sigma_{0}^{-}\left(\sigma_{1}^{+}+\cdots+\sigma_{N}^{+}\right)+\text {h.c. }
$$

- $|00 \ldots 0\rangle$ unchanged
$\cdot|10 \ldots 0\rangle$ and $|0\rangle \frac{|1 \ldots 0\rangle+\cdots+|0 \ldots 1\rangle}{\sqrt{N}}$
form a closed system and are coupled by $\sim \sqrt{N}$
so pi-pulse takes $t \sim \frac{1}{\sqrt{N}}$

All-to-all case: state transfer in time $t \sim \frac{1}{\sqrt{N}}$

- cannot go faster within 1-excitation subspace
- known general bound:
$H=\sigma_{0}^{-}\left(\sigma_{1}^{+}+\cdots+\sigma_{N}^{+}\right)+$h.c.

$$
t \gtrsim \frac{\log N}{N}
$$

- $|00 \ldots 0\rangle$ unchanged
$\cdot|10 \ldots 0\rangle$ and $|0\rangle \frac{|1 \ldots 0\rangle+\cdots+|0 \ldots 1\rangle}{\sqrt{N}}$
form a closed system and are coupled by $\sim \sqrt{N}$
so pi-pulse takes $t \sim \frac{1}{\sqrt{N}}$

Outlook

- tighten both the bounds and the protocols to saturation
- improve understanding of equilibrium and non-equilibrium properties of long-range-interacting many-body systems
- speed up \& bound quantum computing, quantum simulation, classical simulation, preparation of entangled states for metrology, etc...

Thank you

Graduate Students
Jeremy Young
Yidan Wang
Zachary Eldredge
Abhinav Deshpande
Fangli Liu
Su-Kuan Chu Postdocs
Minh Tran
Andrew Guo
Ani Bapat
Jon Curtis
Ron Belyansky
Mohammad Maghrebi \rightarrow Asst. Prof. @ Michigan State
Zhe-Xuan Gong \rightarrow Asst. Prof. @ Colorado School of Mines
Sergey Syzranov \rightarrow Asst. Prof. @ UC Santa Cruz
James Garrison
Paraj Titum
Rex Lundgren
Przemek Bienias

Thank you

PRL I I3, 030602 (20|4); PRL I I4, I5720| (20|5); PRL I I9, 05050। (20|7) PRL II9, I70503 (20I7); arXiv:I808.05225; Guo et al, in prep.
\$\$\$: NSF QIS, NSF Ideas Lab, ARO MURI, ARO, AFOSR, NSF PFC@JQI, ARL CDQI, DoE ASCR Quantum Testbed Pathfinder

Thank you

Jeremy Young

Jim
Garrison

Charles
Clark

Andrew
Childs

Yuan Su

Ali Hamed Moosavian

Fernando Brandão (Caltech)

Spiros Michalakis
(Caltech)
 PRL II9, I70503 (20I7); arXiv:I808.05225; Guo et al, in prep.
\$\$\$: NSF QIS, NSF Ideas Lab, ARO MURI, ARO, AFOSR, NSF PFC@JQI, ARL CDQI, DoE ASCR Quantum Testbed Pathfinder

Conclusions

Shortest time t to send quantum info over distance r $1 / r^{\alpha}$ interactions in D dimensions $\quad N=$ total number of sites

$$
\begin{aligned}
& \text { Goo et al, in prep } \\
& t \sim \frac{1}{N^{1 / 2}} \\
& \downarrow t \sim \frac{1}{N^{1 / 2-\alpha / D}} \\
& \alpha=0 \\
& \uparrow \quad t \gtrsim \frac{\log N}{N^{1-\alpha / D}} \\
& \text { Goo et al, in prep } \\
& t \gtrsim \frac{\log N}{N} \\
& \text { Lashakari et al, } \\
& \text { JHEP (2013) } \\
& \text { Eldredge, Gong, Moosavian, Foss-Feig, } \\
& \text { (formulas shown } \\
& \text { for } N \sim r^{D} \text {) } \\
& t \sim r \\
& 2 D t \gtrsim r^{\frac{\alpha-2 D}{\alpha-D}} \\
& \text { Hastings, } \\
& \text { soma (2006) Tran et al, } \\
& \text { arXiv: } 1808.05225 \text { \& } \\
& \text { Foss-Feig, Gong, Clark, } \\
& \text { AVG, PRL (2015) } \\
& t \gtrsim r \\
& \text { Lib, Robinson (1972) }
\end{aligned}
$$

