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•               & other forms: ion crystals, atoms in multimode cavities    
                                                                      or along waveguides
⇠ 1/r↵

• short-range interactions = finite range or exponentially decaying

Typical condensed matter systems:

• long-range = not short-range (e.g. decaying as          )1/r↵
AMO and other synthetic quantum systems:

Examples:

1/r3•         : Rydberg or magnetic atoms, excitons, NV centers,  
                                                               polar molecules K

Rb1/r6•         : Rydberg atoms

Motivation
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Rb1/r6•         : Rydberg atoms

Motivation
• among the strongest & most tunable interactions available in AMO

ideal for studying strongly interacting quantum many-body physics)

e.g. Rey

e.g. Lukin

e.g. Lev e.g. Abanin



Features of long-range interactions

• mask dimensionality [e.g. Peter, Müller, Wessel, Büchler, PRL 2012;  
                                             Maghrebi, Gong, AVG, PRL 2017]

• faster quantum state transfer, faster quantum computing,  
  faster preparation of entangled states

• unusual ground-state entanglement properties 
                               [e.g.: Koffel, Lewenstein, Tagliacozzo, PRL 2012 
                                       Vodola, Lepori, Ercolessi, AVG, Pupillo, PRL 2014]

• ...



• topological phases in the presence of long-range interactions?

• new phases and phase transitions?

• short-time dynamics after quench: speed limit?

Long-range interactions: active research areas

• long-time dynamics after quench: thermalization? localization?

• …
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 ||B†[A(t), B]||

. . .. . .

A(t) = eiHtAe�iHt

B†B = 1

Lieb-Robinson bounds
• lattice in arbitrary dimension (draw 1D for simplicity)

A B

| i• arbitrary initial state 

r
observable    A

|h |B†A(t)B| i � h |A(t)| i|

• effect on     due to disturbance     : A B

= |h |B†A(t)B �B†BA(t)| i|

= |h |B†[A(t), B]| i| ⌘ Q(r, t)= ||[A(t), B]||



Short-range interactions

H =
X

i

hi,i+1

||hi,i+1||  1

i i+1

hi,i+1

E. Lieb & D. Robinson, 1972

. . .. . .

• arbitrary time dependence allowed

• arbitrary time-dependent on-site terms allowed



Q(r, t)  J1(r)t+ J2(r)
t2
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Cr(t) = J1(r)t+ J2(r)
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Short-range interactions

E. Lieb & D. Robinson, 1972



E. Lieb & D. Robinson, 1972

Jn(r) =
X

r

(kind of like a path integral, but all contributions positive)

Q(r, t)  J1(r)t+ J2(r)
t2

2!
+ J3(r)

t3

3!
+ . . .

Short-range interactions

v ⇠ 1

short-range Lieb-Robinson bound

Q(r, t) . evt�r• signal after time   distance    away: t r

n steps
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Short-range interactions

short-range Lieb-Robinson bound

Q(r, t) . evt�r• signal after time   distance    away: t r

causal  
region

t

r

• observed in cold atoms:  
Cheneau et al (Bloch, Kuhr), Nature (2012)

= ✏

v ⇠ 1

•  shortest time     to send quantum info  
   over distance     is   

t
r t & r

t ⇠ r
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t ⇠ r

E. Lieb & D. Robinson, 1972

Short-range interactions

•  shortest time     to send quantum info  
   over distance     is   

t
r t & r

Applications:

• quantum communication through spin chains
• entanglement growth after quenches or under other (possibly  
  time-dependent) unitary dynamics
• speed of quantum computers
• thermalization rates
• entanglement and correlations in gapped ground states



Interested in:
• shape of causal region (or “light cone”)

First theoretical work: Hazzard et al, 2013; Hauke & Tagliacozzo, 2013; 
Schachenmayer et al, 2013; Knap et al, 2013; Juenemann et al, 2013; Eisert et al, 
2013; Hazzard et al, 2014; Storch et al, 2015; Rajabpour et al, 2014, 2015, …  
First experiments: Richerme et al, Nature 2014; Jurcevic et al, Nature 2014

causal  
region

t

r

→ shortest time     to send quantum info  
    over distance     is   

t
r t & f(r)

t ⇠ f(r)

Lieb-Robinson-type bounds for        interactionsr�↵



H =
X

i<j

hi,j

i j

hi,j

. . .. . .

||hi,j || 
1

|i� j|↵

• consider all ↵ � 0
(can include Kac normalization at the end if desired)

• arbitrary time dependence allowed
• arbitrary time-dependent on-site terms allowed

Lieb-Robinson-type bounds for        interactionsr�↵



Jn(r) =
X

r

Hastings, Koma, Commun. Math. Phys. 265, 781 (2006)

Q(r, t)  J1(r)t+ J2(r)
t2

2!
+ J3(r)

t3

3!
+ . . .

n steps

1/(step length)↵

Lieb-Robinson-type bounds for        interactionsr�↵
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Foss-Feig, Gong, Clark, AVG, PRL 114, 157201 (2015)

Lieb-Robinson-type bounds for        interactionsr�↵

• choose optimal     at the end�

• work in interaction picture of Hsr

• Hastings-Koma series bad at 
treating short-range physics

UI(t) = T
⇣
e�i

R t
0 d⌧H

lr
I (⌧)

⌘
AI(t) = eiH

sr
tAe�iH

sr
t

A(t) = U †
I (t)AI(t)UI(t)

k[A(t), B]k k[U †
I (t)AI(t)UI(t), B]k=

Additional trick #1:
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H
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FIG. 1. A demonstration of the unitary decomposition in Lemma 1.
Left panel: the three disjoint regions A,B,C in D = 2 dimensions
and A is convex. Right panel: Lemma 1 allows the evolution of the
whole system to be approximated by a series of three evolutions of
subsystems. The horizontal axis lists the sites in each of the three
sets A,B,C (not necessarily according to their geometrical arrange-
ment, particularly in higher dimensions). Each box is an evolution
for time t of a Hamiltonian supported on the sites the box covers.
These evolutions can be forward (black edge) or backward (red edge,
with dagger) in time.

between an operator OX(T ) = U†
T
OXUT evolved under a

long-range Hamiltonian for time T and another operator OY

supported on the set Y that is at least a distance R away from
the support X of OX . Let us here briefly explain the essence
of the proof using a one-dimensional system with fixed ↵ and
large enough R, T � ↵ as an example.

The strategy is to use the aforementioned unitary decom-
position to construct another unitary Ũ such that (i) Ũ†OX Ũ
approximates U †

T
OXUT and (ii) ŨOX Ũ commutes with OY ,

and hence the commutator norm k[OX(T ), OY ]k will be ap-
proximately zero, up to the error of our approximation. For
fixed ↵, we consider M ⇠ T equal time slices and use the
unitary decomposition to extract the relevant parts from the
evolution UT in each time slice. Each time we decompose
a unitary, we choose the subsystems A,B,C so that only A
overlaps with the supports of the unitaries from the previous
time slices (see Fig. 2), and therefore the evolutions of B and
BC can be commuted through OX and will cancel out with
their counterparts from U†

T
. In the end, the remaining evo-

lutions that contribute to the construction of Ũ are supported
entirely on a ball of radius ⇠ Ml around X , with l being
the distance between A and C. By choosing l ⇠ R/M and
Ml < R so that Y lies outside the said ball, the commuta-
tor norm k[OX(T ), OY ]k can be approximated by zero with
an error which is at most M ⇠ T times O

�
1/l↵�2

�
, one for

each time slice. Therefore, we obtain a Lieb-Robinson bound
for long-range interactions in one dimension

k[OX(T ), OY ]k  O
✓

vT

l↵�2

◆
= O

✓
(vT )↵�1

R↵�2

◆
. (1)

The effective light cone vT & R
↵�2
↵�1 is obtained by setting the

commutator norm to a small constant. For comparison, the
previously best Lieb-Robinson bound produces a light cone
vT & R

↵�2
↵ [6]. Our bound is therefore tighter in the asymp-

FIG. 2. A step-by-step construction of the unitary Ũ such that
Ũ

†
OX Ũ ⇡ U

†
TOXUT . Each box represents an evolution of the

subsystem covered by the width of the box for a fixed time. The
edge colors of the boxes follow the same convention as in Fig. 1. In
panel (a), the unitary UT is written as a product of evolutions of the
same system in M = 5 consecutive time slices. (b) The evolution in
the last (bottom) time slice is decomposed using the method in Fig. 1,
with the choice of subsystems A,B,C such that X is contained in A.
The evolutions of the subsystems B and BC (gray boxes) therefore
commute with OX and cancel out with their counterparts from U

†
T ,

resulting in (c). In panel (d), we repeat the procedure for the second-
from-bottom time slice, but note the different choice of A,B,C from
panel (b). This difference is necessary to ensure that the evolutions
of B and BC commute with the evolution(s) from the previously de-
composed time slice(s). We then commute them through OX again
and remove them from the construction of Ũ in panel (e). Repeatedly
applying the unitary decomposition for the other time slices, we ob-
tain the unitary Ũ in panel (f), which is supported on a smaller region
than the original unitary UT . With a proper choice of the size ` of B,
we can make sure that Y lies outside this region, and, therefore, Ũ
commutes with OY .

totic limit of large R and large T , while its proof is substan-
tially more intuitive than in Ref. [6]. A more careful analysis
(Sec. IV) shows that our light cone also becomes linear in the
limit ↵ ! 1, where the power-law decaying interactions are
effectively short-range. Moreover, our bound works for arbi-
trary time T , while the bound in Ref. [6] is applicable only in
the long time limit. We provide a more rigorous treatment as
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Lieb-Robinson-type bounds for        interactionsr�↵

Tran, Guo, Su, Garrison, Eldredge, Foss-Feig, AVG, Childs, arXiv:1808.05225
[Based on Haah, Hastings, Kothari, Low, arXiv:1801.03922]

i j

|i� j|�↵
Two errors:

`

For large   , same scaling with ` `

⇠ 1

`↵�2.
X

i2A

X

j2C

1

|i� j|↵
error
for
t⇠1

• ignore          interactionsA�C

• Hamiltonians on      ,    , 
  don’t commute

BCAB B

Both vanish as ` ! 1

Additional trick #2:
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FIG. 1. A demonstration of the unitary decomposition in Lemma 1.
Left panel: the three disjoint regions A,B,C in D = 2 dimensions
and A is convex. Right panel: Lemma 1 allows the evolution of the
whole system to be approximated by a series of three evolutions of
subsystems. The horizontal axis lists the sites in each of the three
sets A,B,C (not necessarily according to their geometrical arrange-
ment, particularly in higher dimensions). Each box is an evolution
for time t of a Hamiltonian supported on the sites the box covers.
These evolutions can be forward (black edge) or backward (red edge,
with dagger) in time.
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supported on the set Y that is at least a distance R away from
the support X of OX . Let us here briefly explain the essence
of the proof using a one-dimensional system with fixed ↵ and
large enough R, T � ↵ as an example.

The strategy is to use the aforementioned unitary decom-
position to construct another unitary Ũ such that (i) Ũ†OX Ũ
approximates U †

T
OXUT and (ii) ŨOX Ũ commutes with OY ,

and hence the commutator norm k[OX(T ), OY ]k will be ap-
proximately zero, up to the error of our approximation. For
fixed ↵, we consider M ⇠ T equal time slices and use the
unitary decomposition to extract the relevant parts from the
evolution UT in each time slice. Each time we decompose
a unitary, we choose the subsystems A,B,C so that only A
overlaps with the supports of the unitaries from the previous
time slices (see Fig. 2), and therefore the evolutions of B and
BC can be commuted through OX and will cancel out with
their counterparts from U†

T
. In the end, the remaining evo-

lutions that contribute to the construction of Ũ are supported
entirely on a ball of radius ⇠ Ml around X , with l being
the distance between A and C. By choosing l ⇠ R/M and
Ml < R so that Y lies outside the said ball, the commuta-
tor norm k[OX(T ), OY ]k can be approximated by zero with
an error which is at most M ⇠ T times O
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each time slice. Therefore, we obtain a Lieb-Robinson bound
for long-range interactions in one dimension
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commutator norm to a small constant. For comparison, the
previously best Lieb-Robinson bound produces a light cone
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↵ [6]. Our bound is therefore tighter in the asymp-

FIG. 2. A step-by-step construction of the unitary Ũ such that
Ũ

†
OX Ũ ⇡ U

†
TOXUT . Each box represents an evolution of the

subsystem covered by the width of the box for a fixed time. The
edge colors of the boxes follow the same convention as in Fig. 1. In
panel (a), the unitary UT is written as a product of evolutions of the
same system in M = 5 consecutive time slices. (b) The evolution in
the last (bottom) time slice is decomposed using the method in Fig. 1,
with the choice of subsystems A,B,C such that X is contained in A.
The evolutions of the subsystems B and BC (gray boxes) therefore
commute with OX and cancel out with their counterparts from U

†
T ,

resulting in (c). In panel (d), we repeat the procedure for the second-
from-bottom time slice, but note the different choice of A,B,C from
panel (b). This difference is necessary to ensure that the evolutions
of B and BC commute with the evolution(s) from the previously de-
composed time slice(s). We then commute them through OX again
and remove them from the construction of Ũ in panel (e). Repeatedly
applying the unitary decomposition for the other time slices, we ob-
tain the unitary Ũ in panel (f), which is supported on a smaller region
than the original unitary UT . With a proper choice of the size ` of B,
we can make sure that Y lies outside this region, and, therefore, Ũ
commutes with OY .

totic limit of large R and large T , while its proof is substan-
tially more intuitive than in Ref. [6]. A more careful analysis
(Sec. IV) shows that our light cone also becomes linear in the
limit ↵ ! 1, where the power-law decaying interactions are
effectively short-range. Moreover, our bound works for arbi-
trary time T , while the bound in Ref. [6] is applicable only in
the long time limit. We provide a more rigorous treatment as
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Tran, Guo, Su, Garrison, Eldredge, Foss-Feig, AVG, Childs, arXiv:1808.05225
[Based on Haah, Hastings, Kothari, Low, arXiv:1801.03922]
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FIG. 1. A demonstration of the unitary decomposition in Lemma 1.
Panel (a): the three disjoint regions A,B,C in D = 1 and D = 2
dimensions with A convex and compact. Panel (b): Lemma 1 allows
the evolution of the whole system to be approximated by a series
of three evolutions of subsystems. The horizontal axis lists the sites
in each of the three sets A,B,C (not necessarily according to their
geometrical arrangement, particularly in higher dimensions). Each
box is an evolution for time t of a Hamiltonian supported on the
sites the box covers. These evolutions can be forward (white fill) or
backward (orange fill, with dagger) in time.

II. SUMMARY OF RESULTS

In this section, we summarize our main results for the case
of a one-dimensional lattice. Without loss of generality, we
assume that the distance between neighboring sites is one.
The unitary decomposition technique in Sec. III is generalized
from a similar result for short-range interactions in Ref. [26].
We use it to approximate the evolution of a long-range in-
teracting system ABC by three sequential evolutions of its
subsystems AB, B, and BC (see Fig. 1). We assume that
the interaction strength between any two sites in the system is
bounded by 1/r↵, with r being the distance between the sites
and ↵ a nonnegative constant. This restriction on the Hamil-
tonian norm also sets the time unit for the evolution of the
system.

There are two sources of error in the approximation: one
due to the truncation of the Hamiltonian of the system ABC
(we ignore the interactions that connect A and C), and the
other due to the Hamiltonians of the subsystems AB,B, and
BC not commuting with each other. For a fixed value of ↵, if
the distance ` between the two regions A and C (see Fig. 1a)
is large enough, namely ` � ↵, the two error sources have the
same scaling with `. To estimate the error, for example from
the truncation, we sum over interactions connecting sites in A
and C, and obtain a total error of O

�
1/`↵�2

�
(in one dimen-

sion) for the approximation in the unitary decomposition (as
shown in Appendix A 1).

In Sec. IV, we use the unitary decomposition to prove
a Lieb-Robinson bound for long-range interactions that is
stronger than previous bounds, including the one we use in
the proof of the unitary decomposition. The subject of such a
bound is usually the norm of the commutator k[OX(T ), OY ]k
between an operator OX(T ) = U†

T
OXUT evolved under a

long-range Hamiltonian for time T and another operator OY

supported on a set Y that is at least a distance R away from

FIG. 2. A step-by-step construction of the unitary Ũ such that
Ũ

†
OX Ũ ⇡ U

†
TOXUT . Each box represents an evolution of the sub-

system covered by the width of the box for a fixed time. The colors
of the boxes follow the same convention as in Fig. 1. In panel (a), the
unitary UT is written as a product of evolutions of the same system
in M = 5 consecutive time slices. (b) The evolution in the last (bot-
tom) time slice is decomposed using the method in Fig. 1, with the
choice of subsystems A,B,C such that X is contained in A. The
evolutions of the subsystems B and BC (hatched boxes) therefore
commute with OX and cancel out with their counterparts from U

†
T ,

resulting in (c). In panel (d), we repeat the procedure for the second-
from-bottom time slice, but note the different choice of A,B,C from
panel (b). This difference is necessary to ensure that the evolutions
of B and BC commute with the evolution(s) from the previously de-
composed time slice(s). We then commute them through OX again
and remove them from the construction of Ũ in panel (e). Repeatedly
applying the unitary decomposition for the other time slices, we ob-
tain the unitary Ũ in panel (f), which is supported on a smaller region
than the original unitary UT . With a proper choice of the size ` of B,
we can make sure that Y lies outside this region, and, therefore, Ũ
commutes with OY .

the support X of OX . Here, we briefly explain the essence
of the proof using a one-dimensional system with fixed ↵
and large enough R, T � ↵ as an example. The strategy
is to use the aforementioned unitary decomposition to con-
struct another unitary Ũ such that (i) Ũ†OX Ũ approximates
U†
T
OXUT and (ii) Ũ†OX Ũ commutes with OY , so the com-

mutator norm k[OX(T ), OY ]k will be approximately zero, up

Lieb-Robinson-type bounds for        interactionsr�↵
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geometrical arrangement, particularly in higher dimensions). Each
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due to the truncation of the Hamiltonian of the system ABC
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OXUT and (ii) Ũ†OX Ũ commutes with OY , so the com-

mutator norm k[OX(T ), OY ]k will be approximately zero, up

2

FIG. 1. A demonstration of the unitary decomposition in Lemma 1.
Panel (a): the three disjoint regions A,B,C in D = 1 and D = 2
dimensions with A convex and compact. Panel (b): Lemma 1 allows
the evolution of the whole system to be approximated by a series
of three evolutions of subsystems. The horizontal axis lists the sites
in each of the three sets A,B,C (not necessarily according to their
geometrical arrangement, particularly in higher dimensions). Each
box is an evolution for time t of a Hamiltonian supported on the
sites the box covers. These evolutions can be forward (white fill) or
backward (orange fill, with dagger) in time.

II. SUMMARY OF RESULTS

In this section, we summarize our main results for the case
of a one-dimensional lattice. Without loss of generality, we
assume that the distance between neighboring sites is one.
The unitary decomposition technique in Sec. III is generalized
from a similar result for short-range interactions in Ref. [26].
We use it to approximate the evolution of a long-range in-
teracting system ABC by three sequential evolutions of its
subsystems AB, B, and BC (see Fig. 1). We assume that
the interaction strength between any two sites in the system is
bounded by 1/r↵, with r being the distance between the sites
and ↵ a nonnegative constant. This restriction on the Hamil-
tonian norm also sets the time unit for the evolution of the
system.

There are two sources of error in the approximation: one
due to the truncation of the Hamiltonian of the system ABC
(we ignore the interactions that connect A and C), and the
other due to the Hamiltonians of the subsystems AB,B, and
BC not commuting with each other. For a fixed value of ↵, if
the distance ` between the two regions A and C (see Fig. 1a)
is large enough, namely ` � ↵, the two error sources have the
same scaling with `. To estimate the error, for example from
the truncation, we sum over interactions connecting sites in A
and C, and obtain a total error of O

�
1/`↵�2

�
(in one dimen-

sion) for the approximation in the unitary decomposition (as
shown in Appendix A 1).

In Sec. IV, we use the unitary decomposition to prove
a Lieb-Robinson bound for long-range interactions that is
stronger than previous bounds, including the one we use in
the proof of the unitary decomposition. The subject of such a
bound is usually the norm of the commutator k[OX(T ), OY ]k
between an operator OX(T ) = U†

T
OXUT evolved under a

long-range Hamiltonian for time T and another operator OY

supported on a set Y that is at least a distance R away from

FIG. 2. A step-by-step construction of the unitary Ũ such that
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U†
T
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Applications

• more gate-efficient quantum simulation protocols
Tran, Guo, Su, Garrison, Eldredge, Foss-Feig, AVG, Childs, arXiv:1808.05225

• local quenches
. . .. . . A B

r
|h |B†A(t)B| i � h |A(t)| i|

Gong, Foss-Feig, Michalakis, AVG, PRL 113, 030602 (2014)

• correlations in gapped ground states fall off no slower than
1

r↵Foss-Feig, Gong, Clark, AVG, PRL 114, 157201 (2015)

• entanglement area laws for dynamics & gapped ground states
Gong, Foss-Feig, Brandão, AVG, PRL 119, 050501 (2017) 

• growth of connected correlations after a global quench

Gong, Foss-Feig, Michalakis, AVG, arXiv:1401.6174v1
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Î = identity

rij

Eldredge, Gong, Young, Moosavian, Foss-Feig, AVG, PRL 119, 170503 (2017)  

controlled (by qubit  )  
    rotation of qubit 

i
X j

Need: controlled-NOT with 
any qubit in A as control & 
every qubit in B as target.
(|0i+ |1i)A|0iB ! |00i+ |11i



rotation rate > (number of controls)⇥ (weakest coupling)

Rtime to double independent of 

1D with 1/r  interactions1/r

|0i |0i |0i|0i|0000i+ |1111i
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form a closed system and are coupled by ⇠
p
N

•

t ⇠ 1p
N

so pi-pulse takes t ⇠
1p
N

• cannot go faster within  
  1-excitation subspace
• known general bound:

t & logN

N



Outlook
• tighten both the bounds and the protocols to saturation

• improve understanding of equilibrium and non-equilibrium 
properties of long-range-interacting many-body systems

• speed up & bound quantum computing, quantum simulation, 
classical simulation, preparation of entangled states for 
metrology, etc…
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    Shortest time     to send quantum info over distance   t r
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