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Microwave	
  Coplanar	
  Waveguide	
  Resonators

• 2D analog of coaxial cable 

• Cavity defined by cutting center pin 

• Voltage antinode at “mirror”

Blais	
  et	
  al.,	
  PRA	
  69,	
  062320	
  (2014)

Modes of Transmission Lines Resonators

Fig. 2.6 Schematic illustration of a typical coplanar waveguide (CPW) resonator used in

circuit QED together with its discretized lumped-element equivalent circuit. The qubit lies

between the center pin and the adjacent ground plane and is located at an antinode of the
electric field, shown in this case for the full-wave resonance of the CPW. From Blais et

al.(2004).

Each segment of the line of length dx has inductance ℓ dx and the voltage drop along
it is −dx ∂x∂tΦ(x, t). The flux through this inductance is thus −dx ∂xΦ(x, t) and the
local value of the current is given by the constitutive equation

I(x, t) = −
1

ℓ
∂xΦ(x, t). (2.121)

The Lagrangian for a system of length L (L is not to be confused with some discrete
inductance)

Lg ≡
∫ L

0
dxL(x, t) =

∫ L

0
dx

[
c

2
(∂tΦ)

2 −
1

2ℓ
(∂xΦ)

2

]
, (2.122)

The Euler-Lagrange equation for this Lagrangian is simply the wave equation

v2p∂
2
xΦ− ∂2tΦ = 0. (2.123)

The momentum conjugate to Φ(x) is simply the charge density

q(x, t) ≡
δLg

δ∂tΦ
= c∂tΦ = cV (x, t) (2.124)

and so the Hamiltonian is given by

H =

∫ L

0
dx

{
1

2c
q2 +

1

2ℓ
(∂xΦ)

2

}
. (2.125)
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Transmon	
  Qubit

Koch	
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  PRA	
  76,	
  042319	
  (2007)

L̂z= !r!p" ·ez=−i" !
!# , so that the rotor’s Hamiltonian reads

Hrot =
L̂z

2

2ml2 − mgl cos # . !2.6"

Identifying the !integer-valued" number operator for Cooper
pairs with the angular momentum of the rotor, n̂↔ L̂z /", and
relating EJ↔mgl, EC↔ !"2 /8ml2", one finds that the rotor
Hamiltonian is identical to the transmon Hamiltonian with
ng=0.

To capture the case of a nonzero offset charge, we imag-
ine that the mass also carries an electrical charge q and
moves in a homogeneous magnetic field with strength B0 in z
direction. Representing the magnetic field by the vector po-
tential A=B0!−y ,x ,0" /2 !symmetric gauge" and noting that
the vector potential enters the Hamiltonian according to

p → p − qA ⇒ Lz → Lz + 1
2qB0l2, !2.7"

one finds that the offset charge ng can be identified with
qB0l2 /2". This establishes a one-to-one mapping between
the transmon system and the charged quantum rotor in a
constant magnetic field. We emphasize that for the transmon
!and CPB" the island charge is well defined so that n̂ has
discrete eigenvalues and # is a compact variable leading to
$!#"=$!#+2%". In the rotor picture, this corresponds to the

fact that the eigenvalues of the angular momentum L̂z are
discrete and that the “positions” # and #+2% are identical. It
is important to note that this mapping is different from the
tilted washboard model used within the context of resistively
shunted junctions, see, e.g., #27$, and must not be confused
with this case.

In the transmon regime, i.e., large EJ /EC, the dynamics of
the rotor is dominated by the strong gravitational field. Ac-
cordingly, small oscillation amplitudes around #=0 are fa-
vored; see Fig. 3. Perturbation theory for small angles imme-

diately leads to an anharmonic oscillator with quartic
perturbation !Duffing oscillator". !This method will be em-
ployed in Sec. II C to obtain the leading-order anharmonicity
corrections." However, the charge dispersion &m cannot be
captured in such a perturbative picture. Within the perturba-
tive approach !at any finite order" the # periodicity is lost
and the angular variable becomes noncompact, −' (#('.
Now, in the absence of the boundary condition $!#+2%"
=$!#" the vector potential can be eliminated by a gauge
transformation. In other words, the effect of the offset charge
ng only enters through the rare event of a full 2% rotation, in
which case the system picks up an Aharonov-Bohm-type
phase. This corresponds to “instanton” tunneling events
through the cosine potential barrier to adjacent wells, and
explains the WKB-type exponential decrease of the charge
dispersion. It is interesting to note that the nonvanishing
charge dispersion is truly a nonperturbative quantum effect,
which can be ascribed to the discreteness of charge or
equivalently to the peculiar role of the vector potential in
quantum mechanics leading to the Aharonov-Bohm effect.

The comparison between the exact result for the charge
dispersion and the asymptotic expansion is depicted in Fig.
4!a". The requirements on the largeness of EJ /EC are seen to
become stricter for increasing level index. For the transmon,
we will mainly focus on the lowest two levels, for which Eq.
!2.5" constitutes a very good approximation when EJ /EC
)20. Asymptotically, the differential charge dispersion
!E01/!ng is dominated by the contribution from the first ex-
cited level, so that from Eqs. !2.3" and !2.5" we have

FIG. 3. !Color online" !a" Rotor analogy for the transmon. The
transmon Hamiltonian can be understood as a charged quantum
rotor in a constant magnetic field %ng. For large EJ /EC, there is a
significant “gravitational” pull on the pendulum and the system
typically remains in the vicinity of #=0. Only tunneling events
between adjacent cosine wells !i.e., a full 2% rotor movement" will
acquire an Aharonov-Bohm-type phase due to ng. The tunneling
probability decreases exponentially with EJ /EC, explaining the ex-
ponential decrease of the charge dispersion. !b" Cosine potential
!black solid line" with corresponding eigenenergies and squared
moduli of the eigenfunctions.

FIG. 4. !Color online" Comparison of numerically exact and
asymptotic expressions for the charge dispersion and energy levels.
!a" Charge dispersion &&m& as a function of the ratio EJ /EC for the
lowest four levels. The solid curves depict the exact results using
Mathieu characteristic values, the dashed curves represent the
asymptotic expansion, Eq. !2.5". The right vertical scale gives the
charge dispersion in MHz for a transition frequency of 7 GHz. !b"
Energy level difference E0m=Em−E0 at ng=1/2 as a function of the
EJ /EC ratio. Solid curves show the exact results; dashed lines are
based on the asymptotic expression !2.11". The vertical scale on the
right-hand side gives the transition frequencies from the ground
state to level m in GHz, assuming a charging energy of EC /h
=0.35 GHz. All numerical data are obtained for ng=1/2.

KOCH et al. PHYSICAL REVIEW A 76, 042319 !2007"

042319-4

monicity, and the realization of strong coupling to the trans-
mission line resonator. In addition, the dispersive regime of
the coupled system is described by an ac Stark shift Hamil-
tonian in complete analogy to the regular CPB, allowing for
the transfer of control and readout protocols from the CPB to
the transmon system.

The effort to reduce the noise susceptibility in solid-state
qubits based on Josephson junctions has led to a variety of
different qubit types. Usually, these designs achieve a noise
suppression in one particular channel, oftentimes accompa-
nied by a tradeoff with respect to noise in other channels.
Flux qubits !10,11" operate at EJ /EC ratios similar to those of
the transmon, i.e., EJ /EC#102–103. Accordingly, flux qubits
reach an insensitivity to charge noise comparable to the
transmon. However, flux qubits will typically show a signifi-
cantly larger susceptibility to flux noise, especially when op-
erated away from the flux sweet spot. Phase qubits !12" trade
in a slight increase in critical-current noise sensitivity for a
drastic suppression of charge noise. Recent devices using
inductive coupling to establish a current bias !17" may also
face increased flux sensitivity.

Remarkably, the transmon achieves its exponential insen-
sitivity to 1/ f charge noise without incurring a penalty in the
form of increased sensitivity to either flux or critical-current
noise. This advantage can be illustrated by comparing the
transmon to the traditional CPB, as shown in Table I. As
discussed above, the transmon is in fact comparatively less
sensitive to flux and critical-current noise than the CPB. In
fact, even without any reduction in the canonical 1 / f noise
intensities, we predict that a transmon qubit operated at the
flux sweet spot should be limited only by the effects of re-
laxation. In conclusion, we are confident that the transmon
will belong to a new generation of superconducting qubits
with significantly improved coherence times and scalability.
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APPENDIX A: FULL NETWORK ANALYSIS

For completeness, we describe the modeling of the trans-
mon device starting from an analysis of the full capacitance
network !56". This network is depicted in Fig. 12$a%. It is
based on the capacitances between the various conducting
islands, see Fig. 12$b%. For a minimal model, we take into
account the two ground planes and center pin of the trans-
mission line resonator as well as the two islands connected
through the Josephson junctions. In the actual device, the dc

bias is supplied via an additional capacitance to the center
pin. For simplicity, we restrict our network to five islands in
Fig. 12, considering only the effective voltage V between
bottom ground plane and center pin.

By Thévenin’s theorem, any single-port linear network of
impedances and voltage sources can be substituted by an
equivalent circuit consisting of one voltage source V! and
one impedance. In our particular case it is useful to retain the
original gate voltage source Vg in the equivalent circuit. This
can be accomplished by allowing for one additional imped-
ance, as shown in Fig. 12$c%. The two effective capacitances
can be interpreted as an effective gate capacitance Cg and an
effective shunting capacitance CB. Together, they adjust for
the correct voltage seen from the Josephson-junction port via
the parameter !=Vab /Vg=Cg /C" and the total capacitance
C"=CB+Cg+CJ between the nodes a and b; see Fig. 12$c%.
$In the following, we absorb the junction capacitance into
CB.%

The parameters ! and C" are extracted from the full ca-
pacitance network as follows. Each conducting island, enu-
merated by i=1, . . . ,n, is associated with a certain charge Qi
and a potential #i $with respect to infinity%. These obey the
linear relation Qi=& jCij# j. For each island, we know either
its charge or its potential. Let us choose the island enumera-
tion such that for islands i$ i0, the charges Qi

* are known,
whereas for i% i0 the potentials #i

* are known. $Here, the
additional star signals that the quantity is known.% We thus
have the following system of linear equations:

Qi
* = &

j$i0

Cij# j + &
j%i0

Cij# j
* for i $ i0, $A1%

Qi = &
j$i0

Cij# j + &
j%i0

Cij# j
* for i % i0, $A2%

from which we can determine the unknown quantities
#1 , . . . ,#i0

,Qi0+1 , . . . ,Qn. With the solution, we can immedi-

FIG. 12. $Color online% $a% Full capacitance network for the
transmon device. $b% Simplified schematic of the transmon device
design $not to scale%. $c% Reduced network.
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 Anharmonic oscillator
ˆH = 4EC n̂2 � EJ cos '̂
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it is related to the film thickness where thicker films pro-
mote boundary motion and thereby yield larger grain 
sizes (Mullins 1958). This behavior was observed in our 
samples where the 15  nm-thick Al films have smaller 
average grain size, and the 60  nm films show a much 
larger average grain size, see Fig. 4 and Table 2. In both 
cases, we find that the average grain size is approximately 
twice the film thickness.

Abnormal grain growth
Figure 5a shows a very large grain surrounded by smaller 
grains in a 60 nm-thick Al film. The size of this grain is 
d ≈ 360  nm, which is almost six times the film thick-
ness. A few of these extremely big grains were observed 
in all of our specimens (15 and 60 nm thick films) and are 
seen in the tail of the grain size distribution plots, Fig 4. 
As we discussed in section a), the normal grain growth 
stops when the average grain size of the film becomes 
two or three times the film thickness. The implication of 
the presence of the abnormally large grains is that some 
grains continue growing exceeding the normal grain 
size by another mechanism, i.e. abnormal grain growth. 
According to Mullins, the effect of two grains having 
unequal free-surface energies and being separated by 
a grain boundary is that the energy difference acts as a 

driving force to move the grain boundary towards a con-
figuration with lower total energy (Mullins 1958). Hence, 
a grain can grow abnormally big if the motion of all its 
boundaries decrease the total energy (Frost et al. 1992). 
Both the grain boundary interfaces and the layer surface 
need to be considered for the interface and Mullins has 
suggested that grains with different crystallographic ori-
entations may have different free-surface energies. This 
would then act as a driving force for some grains to grow 
abnormally big at the expense of other grains in order to 
minimize the free-surface energy. This raises the question 
if the abnormally large grains have a certain crystallo-
graphic orientation with respect to the substrate surface 
(Mullins 1958; Frost et al. 1990, 1992; Palmer et al. 1987; 
Longworth and Thompson 1991). Using selected area 
electron diffraction we determined the crystallographic 
orientation of Al grains with abnormally large size and 
found that they had the [111] direction perpendicular 
to the substrate, see Fig. 5a. This can be explained by the 
fact that that this direction is the one with the lowest sur-
face energy in FCC crystals such as Al.

Twin boundaries
The area indicated with white arrows in Fig.  5b shows 
a twin boundary in a 60 nm Al layer evaporated on a Si 
substrate. Twins are observed in all images of the plan-
view specimens and for both film thicknesses. The twin 

Fig. 2 a SEM image showing surface morphology of the top Al 
layers top-view. b BF TEM image of the junction, the solid black arrows 
indicate the Al grains in the two Al layers. The wavy surface on the 
top Al layer gives rise to the granular contrast observed in SEM as in 
a. It should be noted that the dimension of the surface roughness 
observed in TEM matches the dimension of the granular structure in 
the SEM images. This is indicated by the dashed black lines

Fig. 3 BF TEM image, the dashed white frame marks the grain bound-
ary groove that appeared in between two Al grains in the bottom 
layer

Table 2 Average values ⟨d⟩ and  standard deviations σd 
extracted for  the Al grain size distributions for  the 15 
and 60 nm-thick films in Fig. 4, using the log-normal distri-
bution function

Thickness 60 nm 15 nm

⟨d⟩ (nm) 92 ± 8 38 ± 3

σd (nm) 45 ± 10 18 ± 4
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is the purely quantum limit, where the atom and cavity evolve via their 
coherent coupling in the absence of dissipation. This system simply obeys 
the Schrodinger equation with the Jaynes-Cummings Hamiltonian [48], 

Hjc = hcoh+h + hcoS+6 + hgo(h~ + + h+8). (25) 

Here we consider a two-level atom and co is the common resonance 
frequency of both atom and cavity. Diagonalizing this Hamiltonian gives 
rise to the well-known Jaynes-Cummings ladder of eigenstates for the 
coupled atom-cavity system, as illustrated in Fig. 18. The coupled 
eigenstates are characterized by the equal sharing of excitation between 
the atomic dipole and cavity field, so that the n-excitation bare states Ig, n} 
and le, n -  1) of energy nhco are replaced by 

1 
14-'> -- ~ (Ig, n} -t-le, n - 1)), (26) 

Ig,3},le,2} 

Ig,2},le,1} 

Ig,]},le,0} 

(L )  ' r 

i 

(.D I r  
A L  

<'.]i"+ ,f3hgo 

. . . . ," 

<2 / + 9t-2hgo; 

1+3) 
I--3) 
1+2} 

I-2} 

I-l) 
]g,0 o3 

} / / / / / / / / / / / / / / / / / /  

] unc~ I [ coupled  

FIG. 18. Jaynes-Cummings ladder of eigenstates for the coupled atom-cavity system. Bare 
eigenstates of the atom and cavity field are shown on the left, labeled by atomic internal state 
and number of photons in the cavity mode, under the condition COc = coa = co. When the atomic 
dipole is coupled to the cavity field with single-photon Rabi frequency 2g0, the energy 
eigenstates form the ladder shown on the right. The Jaynes-Cummings ladder has pairs of 
strong- and weak-field-seeking states with each pair split by an energy that rises as the square 
root of the number of excitations. 
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Heptagon-­‐Kagome	
  Device

• 2 shells 

• Operating frequency: 16 GHz 

• 4 input-output ports

Kollár	
  et	
  al.	
  arXiv:1802.09549	
  (2018)
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Band	
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BiparLte	
  and	
  Non-­‐BiparLte	
  Graphs

E	
  =	
  -­‐3

•All	
  neighbors	
  opposite	
  sign

Bipar?te

•	
  Not	
  all	
  neighbors	
  can	
  be	
  

opposite	
  sign

Non-­‐Bipar?te



Heptagon-­‐Pentagon-­‐Kagome	
  La4ce

• Modified graphene with interstitials 

• Heptagonal and pentagonal plaquettes 

• Non-bipartite  

• Tripled 12-site unit cell



Real-­‐Space	
  Topology	
  and	
  Band	
  Touches

Bergman	
  et	
  al.	
  PRB	
  78,	
  125104	
  (2008)

• Triangular Bravais lattice 

• 3 site unit cell

Kagome lattice

Band Structure

Flat-band States Incontractible Loop States



Real-­‐Space	
  Topology	
  and	
  Band	
  Gaps
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  FuncLons
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Half-­‐Wave	
  Band	
  Structure	
  Correspondence
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Full-­‐Wave	
  v	
  Half-­‐Wave	
  Flat	
  Band	
  States

• Full-wave has localized states 
on only even cycles of the layout.

• Half-wave has localized states 
on any cycle of the layout.

FW FWHW HW



Full-­‐Wave	
  Half-­‐Wave	
  Correspondence

FW
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  Bands
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Conclusion	
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