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® Quantum simulation with circuit QED lattices

® Microwave resonators
® Superconducting qubits

® Interacting photons

® Hyperbolic lattices

® Flat-band lattices




Microwave Coplanar Waveguide Resonators

e 2D analog of coaxial cable

® Cavity defined by cutting center pin

® \/oltage antinode at “mirror”

Harmonic oscillator
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Blais et al., PRA 69, 062320 (2014)




Transmon Qubit

Anharmonic oscillator
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Koch et al. PRA 76, 042319 (2007)




Non-Linearities and Photon-Photon Interactions

Qubit-Cavity

(Jaynes-Cummings Model)
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® Oxide not perfectly uniform
®
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® Inductance from electron momentum
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® Dependent on carrier density
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Ye et al. Advances in AMO Physics 49 (2003) Vissers et al. APL 107, 062601 (2015)




CPW Lattices

e Capacitive coupling of resonators

® Tight-binding solid
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Houck et al. Nat Phys 8, (2012)
Underwood et al. PRA 86, 023837 (2012)




Deformable Resonators

—

® Frequency depends only on length

® Coupling depends on ends

e“Bendable”




The Graph is Everything

Regular Lattice

Regular Tight-Binding Graph Alternate Tight-Binding Graph
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Layout and Effective Lattices

Resonator Lattice Effective Photonic Lattice

® An edge on each resonator ® A vertex on each resonator

Layout X Line Graph [,( X)




® Quantum simulation with circuit QED lattices

® Microwave resonators
® Superconducting qubits

® Interacting photons

® Hyperbolic lattices

® Flat-band lattices




Projecting to Flat 2D

Distance is not
preserved.

Distance is not
preserved.




Planar and Non-Planar Lattices

n=>5

spherical Distance is not
preserved.

t is preserved.

n=7 5’; Graph is preserved.

hyperbolic




Band Structure Calculations

1 System Size
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Hyperbolic geometry is non-commutative

® No Bravais lattice

® No Bloch theory

® Graph theory

. 0.2 0.4 0.6 0.8
® Brute force TB numerics Normalized Eigenvalue Number




Heptagon-Kagome Device

e 2 shells
e Operating frequency: 16 GHz

® 4 input-output ports

—— experiment

Transmission (dB)
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Kollar et al. arXiv:1802.09549 (2018)
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Band Structure Correspondence

Layout X
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Band Structure Correspondence

Layout Tight-Binding Hamiltonian Incidence Operator

® Bounded self-adjoint operator on X ® From X to L(X)

Hy M (X)) — (L(X))

(
1, if e and v are incident,

Effective Hamiltonian | 0 otherwise.

\

® Bounded self-adjoint operator on L(X)

Hy(X) = Hpx)

MM = Dy + Hy
MM =2l + H,(X)




Density of States and Flat-Band States




Bipartite and Non-Bipartite Graphs

Bipartite Non-Bipartite

® All neighbors opposite sign ® Not all neighbors can be

opposite sign




Heptagon-Pentagon-Kagome Lattice

Energy (|t])

e Modified graphene with interstitials
e Heptagonal and pentagonal plaquettes
® Non-bipartite

® Tripled 12-site unit cell




Real-Space Topology and Band Touches

Kagome lattice

® Triangular Bravais lattice

® 3 site unit cell

Band Structure

Incontractible Loop States

Energy (Itl)

Energy (Itl)

Bergman et al. PRB 78, 125104 (2008)
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S-Wave and P-Wave On-Site Wave Functions

E wC. PP~
coupling
capacitors




Half-Wave Band Structure Correspondence

Layout Tight-Binding Hamiltonian Incidence Operator

® Bounded self-adjoint operator on X ® From X to L(X)

Hx N : (X) = C(L(X))

)
1, ifet=w,

Effective Hamiltonian , 1 ife =u,

® Bounded self-adjoint operator on L(X) 0

otherwise.

® Mixed positive and negative hopping

Ha(X)#HL(X) NtN:DX—HX
NN' =2 + H,(X)
Dy — Hy ~ 2 + H,(X)

d—2—Eg, e |dentical on bipartite graphs

_9 ® |nverted otherwise




Full-Wave v Half-Wave Flat Band States

e Full-wave has localized states
on only even cycles of the layout.

e Half-wave has localized states
on any cycle of the layout.




Full-Wave Half-Wave Correspondence
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Subdivision Graphs: Flat Bands at O




Subdivision Graphs and Optimally Gapped Flat Bands

Energy (|t])

ky (mi/a)
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Subdivision Graphs and Optimally Gapped Flat Bands
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Subdivision Graphs and Optimally Gapped Flat Bands

Energy (|t])
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Subdivision Graphs and Optimally Gapped Flat Bands

Energy (]t])




Conclusion and Outlook

® Circuit QED lattices ® Qutlook

® Artificial photonic materials ® Interacting photons in curved space
® Interacting photons ® Many-body physics in flat bands

® Hyperbolic lattices

® Unusual band structures

® On-chip fabrication

® Flat-band lattices

e 0,-2

® Optimal gaps

Kollar et al. arXiv:1802.09549 (2018)
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