Backaction of Floquet systems on quantized drive 1 - L=1 - L

Full

Floquet ETH

 \circ Peak (σ_I^2)

 $\square \operatorname{Peak}(\sigma_{S,\operatorname{qudit}}^2)$

Michael Kolodrubetz, UT Dallas

In collaboration with...

UC Berkeley: Takahiro Morimoto^A, Snir Gazit^A, Joel Moore^A, **Nathan Ng**^B

Neils Bohr Institute: **Frederik Nathan^A**, Mark Rudner^A

UT Dallas: Saeed Rahmanian

References: APhys. Rev. Lett. 120, 150601 (2018); BarXiv:1809.02606

From Floquet to photons

- Periodic (Floquet) driving gives rise to a wide variety of new phenomena
 - Time crystals
 - Pi-Majoranas
 - Floquet SPTs
- What does the driving? Photon
- Let's quantize them and see what happens!

Example: Quantized time crystal

• Consider monochromatic version of time crystal:

$$H(t) = H_0 + H_1 \cos(\Omega t)$$

$$H_0 = \sum (h_{x0}X_j + JZ_jZ_{j+1} + g_jZ_j); H_1 = \sum h_{xd}X_j$$

Extended zone:

- Time crystal in equilibrium
 - Breaks Watanabe & Oshikawa?

Outline

- Intro to Floquet-Thouless energy pump [MK, Nathan, Gazit, Morimoto, Moore, PRL 120, 150601 (2018)]
- Quantizing photons in energy pump
 - Topological photon creation/conversion
 - Closed cycle energy/charge pump
- Quantizing photons in Floquet MBL [Ng, MK, arXiv:1809.02606]
 - Localization in present of global coupling
 - Effect of Floquet cutoff
 - Inverted mobility edge?

Starting point: Floquet-SSH model

- Chiral symmetry means $\epsilon_F = 0, \pi/T$ special
- $^{\circ}$ Tuning parameters gives both 0 and π modes

 π mode

0 mode

- These π modes play important role in Floquet systems
 - \mathbb{Z}_2 time crystal / π spin glass is dual to π Majorana chain [Khemani et al, PRL 116, 250401 (2016); Keyserlingk and Sondhi, PRB 93, 245146 (2016); Else et al, PRL 117, 090402 (2016)]
 - π modes distinguish anomalous Floquet insulator from Chern insulator [Kitagawa et al, PRB 82, 235114 (2010); Rudner et al, PRX 3, 031005(2013)]
 - Hybridization of π modes gives rise to Floquet criticality [Berdanier et al, arXiv:1803.00019]

- ullet These π modes play important role in Floquet systems
 - $^{\circ}$ We ask the question of what happens to a Thouless charge pump when π modes are involved

- Test using Floquet version of Rice-Mele model
 - $^{\circ}$ Result: Surrounding a π mode gives rise to a conventional Thouless charge pump
 - $^{\circ}$ Reason: The charge pump does not require any symmetry besides charge conservation, so can just deform π gap to arbitrary quasienergy
 - But in the process uncover new type of pumping cycle:
 Floquet-Thouless energy pump

- Surround both 0 and π degeneracies $\Rightarrow C_1 = 0$
- But topological edge states remain

 Looks very similar to anomalous Floquet insulator [Kitagawa et al, PRB 82, 235114 (2010)]

Floquet-Thouless energy pump is dimensional reduction of anomalous Floquet insulator

Use this intuition to get simpler flat band model...*

Stable to MBL (within numerical uncertainty)

- Physical consequences?
 - Particles themselves do not move (stroboscopically)

- Physical consequences?
 - Particles themselves do not move (stroboscopically)
 - Pumps photon quanta from one side of system to the other

$$W_L = -\hbar\Omega$$

$$W_R = \hbar\Omega$$

• Pump involves quantized backaction (work) on the bath $\frac{\nu}{T} = \frac{1}{2\pi\hbar L} \left| \int d\lambda \sum_n \left(\frac{1}{T} \int_0^{L} dt \langle \psi_n | \hat{x} \partial_\lambda \ H | \psi_n \rangle \right) \right|$

Option I: local photon "baths"

• $|n_1, n_2, \dots, MBL\rangle \to |n_1 - 1, n_2, \dots, n_\ell + 1, MBL\rangle$

Option 2: stick it in a cavity

$$W_L = -\hbar\Omega$$

$$W_R = \hbar\Omega$$

- $|n, MBL\rangle \rightarrow |n+1, L\rangle + |n-1, R\rangle + |n, MBL_{bulk}\rangle$?
- Position-dependent entanglement with photons?

Option 3: fill half the system, including the edge state

$$W_R = \hbar\Omega$$

- $|n, MBL\rangle \rightarrow |n-1, MBL\rangle$
- Topological pumping of photons out of cavity

Option 4: create drive via Raman lasers

- $|n_1, n_2, MBL\rangle \to |n_1 + 1, n_2 1, MBL\rangle$
- Topological frequency conversion

How does this differ from Martin, Refael and

- Requires adiabatic ramping
- Works for arbitrary frequencies
- Many body effect throughout spectrum Few body ground state effect
- Protected by winding number

- Photons "pump" themselves
- Works for low frequencies
- Protected by Chern number

^{*} PRX 7, 041008 (2017)

Option 3: fill half the system, including the edge state

$$W_R = \hbar\Omega$$

- $|n, MBL\rangle \rightarrow |n-1, MBL\rangle$
- Topological pumping of photons out of cavity
 - What happens when we pump down to n = 0?

- Floquet winding numbers originate from non-zero Chern numbers in "artificial" bands near cutoff
- Upon reaching $n \approx 0$, Chern number initiates charge pumping

- At some point I used the fact that the 1D chain was localized, consistent with what we know about Floquet MBL
- But with cavity photon, have localized spins/atoms/electrons coupled to a *global* mode
- Rest of talk: How to reconcile localization with global coupling to photons?

 Start with Hamiltonian of Zhang, Khemani and Huse* and monochromatize it:

$$H = \frac{H_z + H_x}{2} + \cos(\Omega t) \frac{H_z - H_x}{2}$$

$$H_z = \sum_i (h + g\sqrt{1 - \Gamma^2}G_i)\tau_i^z + \tau_i^z \tau_{i+1}^z$$

$$H_x = g\Gamma \sum_i \tau_i^x$$

- Important parameter: $\Gamma = \text{quantum fluctuations}$
- Other parameters: h = 0.809, g = 0.9045, $\Omega = 3.927$

• MBL/ETH transition seems to survive at $\Gamma_c \sim 0.3$

• When looking at Floquet extended zone, we often will impose a cutoff on photon number: $-N_c \le n \le N_c$

• Equivalent to global coupling of spin chain to central qudit with dimension $d=2N_c+1$

• For Floquet, should be independent of d, i.e., take the limit $d \to \infty$ first

• We will try to understand dependence on both d and L

Central qudit Hamiltonian:

$$H_{\rm EZ} = \sum_{n} \left(\frac{1}{2} H_{+} + \Omega n \right) \otimes |n\rangle\langle n| + \frac{1}{4} H_{-} \otimes \left(\sum_{n} |n+1\rangle\langle n| + \text{h.c.} \right)$$

$$H_{\pm} = H_z \pm H_x$$

$$H_z = \sum_{i} (h + g\sqrt{1 - \Gamma^2}G_i)\tau_i^z + \tau_i^z \tau_{i+1}^z \mathcal{A}$$

$$H_x = g\Gamma \sum_i \tau_i^x$$

- Methods:
 - Shift-inverse target 10 states in middle of spectrum
 - Measure...
 - Level statistics

$$r = \frac{\min(E_n - E_{n-1}, E_{n+1} - E_n)}{\max(E_n - E_{n-1}, E_{n+1} - E_n)}$$

• Half-system mutual information $I(A, B) = S(A) - S(B) - S(A \cup B)$

Qudit entanglement

• σ_I^2 = fluctuations over disorder/eigenstates

• No MBL at d=2: Ponte et al., Phil. Trans. R. Soc. A 375, 20160428 (2017): Hetterich et al., arXiv:1806.08316

Consistent with thermalization at all Γ in the thermodynamic limit

Spin chain thermalizes for large Γ , but qudit does not

- What is going on?
 - $^{\circ}$ At large d, qudit becomes Wannier-Stark localized, exactly like photons in Floquet extended zone
 - Qudit does not explore all accessible states: athermal
 - $^{\circ}$ At smaller d, qudit explores more of its Hilbert space, eventually begins to notice that its Hilbert space is bounded
 - Arguments from Ponte et al. suggest that this can lead to thermalization

• How much does qudit spread?

$$H_{\text{EZ}} = \sum_{n} \left(\frac{1}{2} H_{+} + \Omega n \right) \otimes |n\rangle \langle n| + \frac{1}{4} H_{-} \otimes \left(\sum_{n} |n+1\rangle \langle n| + \text{h.c.} \right)$$

$$H_{\pm} = H_{z} + H_{x}$$

$$H_{z} = \sum_{i} (h + g\sqrt{1 - \Gamma^{2}} G_{i}) \tau_{i}^{z} + \tau_{i}^{z} \tau_{i+1}^{z}$$

$$H_{x} = g \sum_{i} \tau_{i}^{x}$$

• Now exact Wannier-Stark: $\sigma_n^2 = \frac{\langle H_z \rangle^2}{2\Omega^2} \sim L$

• Can argue perturbatively stable in Γ . But what about $\Gamma = O(\Gamma_c)$?

- "Anomalous" behavior
 - Localization survives the presence of a global mode
 - Larger quantum "bath" allows localization ($d=\infty$) while smaller "bath" causes thermalization
 - Localization of chain is not one-to-one with localization of qudit
 - Transition from MBL to ETH as energy is lowered?

Outline

- Intro to Floquet-Thouless energy pump [MK, Nathan, Gazit, Morimoto, Moore, PRL 120, 150601 (2018)]
- Quantizing photons in energy pump
 - Topological photon creation/conversion
 - Closed cycle energy/charge pump
- Quantizing photons in Floquet MBL [Ng, MK, arXiv:1809.02606]
 - Localization in present of global coupling
 - Effect of Floquet cutoff
 - Inverted mobility edge?

Acknowledgments

Berkeley

Joel Moore

Takahiro Morimoto

Snir Gazit

Copenhagen

Frederik Nathan

Mark Rudner

UT Dallas

Funding

SIMONS FOUNDATION

