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What happens when we continually measure an interacting many-body
system?

What can we say about the interplay between unitary dynamics and
continual local measurements? Xiao Chen Matthew Fisher

KITP UCSB

Quantum Zeno effect: when you make measurements very frequently, the
state cannot evolve.

This talk:
In a prototypical model, we find a phase transition in entanglement entropy
from volume-law to area-law, between rare and frequent measurements.



Random unitary circuit

Nahum, Ruhman, Vijay, Haah, 2016
Nahum, Vijay, Haah, 2017

von Keyserlingk, Rakovszky, Pollmann, Sondhi, 2017

A minimal model: random unitary circuit.

(i) unitarity

(ii) local interaction

but no other structures (chaotic, no conservation laws).

Aims to capture universal dynamics of entanglement entropy

M random unitary Focus on (1+1)D in this talk



Random non-unitary circuit

Nahum, Ruhman, Vijay, Haah, 2016
Nahum, Vijay, Haah, 2017

von Keyserlingk, Rakovszky, Pollmann, Sondhi, 2017

A minimal model: random unitary circuit.

(i) unitarity

(ii) local interaction

but no other structures (chaotic, no conservation laws).

Aims to capture universal dynamics of entanglement entropy

H random unitary Focus on (1+1)D in this talk

nk] local projective measurement p: the measurement rate

Randomly pick a fraction p out of all the possible
positions (L * f) to make a local measurement of Z.

[ Collapse the wave function and keep the pure state!!

Chan, Nandkishore, Pretko, Smith, 1808.05949
Skinner, Ruhman, Nahum, 1808.05953
YL, Chen, Fisher, 1808.06134



Competition between U & M

t+1

Unitary gates at x: generates entanglement locally, as random crystal growth

S(x,t+1) =min(S(x —1,t),S(x+1,t))+ 1

p -> 0, maximally entangled in the bulk of the circuit (t >> L)
Nahum, Ruhman, Vijay, Haah, 2016 [
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Unitary gates at x: generates entanglement locally, as random crystal growth

S(x,t+ 1) =min(S(x —1,t),S(x+1,t)) +1

p -> 0, maximally entangled in the bulk of the circuit (t >> L)

Nahum, Ruhman, Vijay, Haah, 2016 [

t+1
Measurements: extracting information from the system, and trying to
disentangle the wavefunction.

In the Zeno limit (p -> 1), measurement on every qubit, a product state in
local Z basis, fully disentangled.

t
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p -> 0, maximally entangled in the bulk of the circuit (t >> L)
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t+1
Measurements: extracting information from the system, and trying to
disentangle the wavefunction.

In the Zeno limit (p -> 1), measurement on every qubit, a product state in
local Z basis, fully disentangled.

t

For any p, as t >> L, the entangling effect of unitaries and the disentangling
effects of the measurements presumably cancel out, thus reaching steady states
with some characteristic value of entanglement entropy.



Steady state entanglement: Phase diagram?
A A

t+1 L[] X [

Unitary gates at x: generates entanglement locally, as random crystal growth

S(x,t+1) =min(S(x —1,t),S(x+1,t))+ 1

p -> 0, maximally entangled in the bulk of the circuit (t >> L)
Nahum, Ruhman, Vijay, Haah, 2016 [ [

O

A A
t+1 X
Measurements: extracting information from the system, and trying to
disentangle the wavefunction.
In the Zeno limit (p -> 1), measurement on every qubit, a product state in
local Z basis, fully disentangled. ;

For any p, as t >> L, the entangling effect of unitaries and the disentangling
effects of the measurements presumably cancel out, thus reaching steady states

with some characteristic value of entanglement entropy.
Volume law What happens between these limits? Area law
Is the area law stable when p < 1?
@ Is the volume law stable when p > 0? @
29 p
2 1




Phase transition in entanglement entropy

Is the area law stable when p < 1? Yes and yes \SF'Ei"é'ﬁé’nRE!’STZ?’1N832”o’Qi ;208.05953
Is the volume law stable when p > 07? ' ’ ’ ) .

The phase diagram we found:
A stable volume law phase

— s

Sa=ap La Sa=0(1) 1
0 O<ap<1 Pe
Sa
A 'Z‘ A P<Pc, SA=ap LA

p=pc, Sa~ (La)y or Sa~logLa

p>pc, area law

L > La
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Phase transition in entanglement entropy

random Clifford circuit
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Log-Log scale

Skinner, Ruhman, Nahum, 1808.05953

| YL, Chen, Fisher, 1808.06134

A

Asymptotes to slope 1
SA = dp LA

Asymptotes to slope O
Sa=0(1)




Phase transition in entanglement entropy

random Clifford circuit Skinner, Ruhman, Nahum, 1808.05953

YL, Chen, Fisher, 1808.06134
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Phase transition seen in mutual information

random Clifford circuit

] Skinner, Ruhman, Nahum, 1808.05953
I(A, B) = Sa + Sg - Sau B measures the correlation between A and B

YL, Chen, Fisher, in preparation
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Quantum trajectory v.s. quantum channel

1) After each measurement, we “record” the result of measurement.
Effectively looking at the pure state wavefunctionas { — o0

Pa — <¢| Pa ‘¢>
Quantum trajectory P, |4

) —» o
2o )]

Allows us to look at the average entanglement entropy:

Sa(t) =Trapa(t)logpa(t), palt) =Trg|¥(2)) (D)

2) After each measurement, we “forget” the result of measurement.
Effectively looking at the mixed state density matrixas { — o0

m—1

Quantum channel p—Elp] = ZPaPPl

Allows us to look at the thermal entropy:

Sth = Trplog p



Sih

Mixed state: always (infinitely) thermal for any p > 0!

p o 1 is a obvious fixed point of the quantum channel P — Elp] = ZPaPPJL

10

random unitaries from the Haar measure

||||||||||||||||||||||||

YL, Chen, Fisher, 1808.06134

10

Indeed, with any initial state, we find maximal
thermal entropy for any finite rate of
measurement, so that

BH

p(t = 00) ~ lim e™ P x 1

B—0

Constantly measuring & quenching the system
always drives it to infinite temperature!



Random Clifford circuit: the stabilizer formalism

Stabilizer state (stabilizer code): ﬁptltesm%r;‘, 1997 2006
leisen, uang,

Aaronson, Gottesman, 2004

Given a subset G ={g, ..., g.} of the Pauli group on L quits P, such that

1. [9i, g]] = O for all pairs (J, j)

2. (92 =1

3. G is independent

there is a unique wavefunction |@> (on L qubits) such that
gilw>=|w>forall i

We say that |@> is stabilized by G.

Examples:

1. The Bell pair state
|w> = (1/72)(|00>+|11>) Output = U (Input) Ut

G = {X1 X2, Z1 ZZ} Operation Input | Output
S=<G>={l, X4 X2, Z1 22, -Y1 Y2} X | XX,
controlled-NOT ),(2 )fz
2. The GHZ state S
> = (172)(|000>+|111>) e
G ={X1 X2 X3, Z1 £2, 2> Z3} H Z X
S=<G>={l, 21 22, 22 23, Z1 Z3, X1 X2 X3, -Y1 Y2 X3, -X1 Y2 Y3, -Y1 X2 Y3} S =7 )Z( 32/

Clifford unitaries: takes one Pauli string operator to another, thus preserves stabilizer states

Pauli measurements: for G = {g+, ..., gm, Gm+1, Qm+2, ..., Gm+n}, Where L = m+n, and
[9,971=1[9 921=...=[g, gm] =0
{9, gm+1}={g, gm+2} = ... ={g, gm+n} = 0

after measuring in the eigenbasis of g € P, G becomes
Gafter = {91, cony my, Om+1 *gm+2, Gm+2 *gm+3, ..., m+n-2 *Gm+n-1, Gm+n-1 * m-+n, Q}



Random Clifford circuit: the stabilizer formalism

Stabilizer state (stabilizer code): ﬁ_otltesmacr;l, 1997 2006
leisen, uang,

Aaronson, Gottesman, 2004

Given a subset G ={g, ..., g.} of the Pauli group on L quits P, such that

1. [9i, g]] = O for all pairs (J, j)

2. (92 =1

3. G is independent

there is a unique wavefunction |@> (on L qubits) such that
gilw>=|w>forall i

We say that |@> is stabilized by G.

Examples: . : : :
Gottesman-Knill theorem: a circuit with
1. The Bell pair, - - I
> = (1,¢2)(|O(CI|fford unitary gates anq I_’aull | ut = U (Input) Ut
G = {X; Xmeasurements can be efficiently simulated. s T o
S =<G> =1, X7 X3, Z1 Z2, - Y1 Y2 X, | XX,
controlled-NOT X2 X2
2. The GHZ state ? ZZIZ
lw> = (1/72)(|000>+|111>) e
G ={X1 X2 X3, Z1 22, Z> Z3} H Z X
S=<G>={l, Z1 £z, 22 Z3, Z1 Z3, X1 X2 X3, -Y1 Y2 X3, -X1 Y2 Y3, -Y1 X2 Y3} S =v7 )Z( 1;
Clifford unitaries: takes one Pauli string operator to another, thus preserves stabilizer states
Pauli measurements: for G = {g+, ..., gm, Gm+1, Qm+2, ..., Gm+n}, Where L = m+n, and
[9, 9711=19, 92] = ... =[g, gm] = 0
{9, gm+1}={g, gm+2} = ... ={g, gm+n} = 0

after measuring in the eigenbasis of g € P, G becomes
Gafter = {91, ceny my, Om+1 *gm+2, Gm+2 *gm+3, ..., m+n-2 *Gm+n-1, Gm+n-1 * m-+n, Q}



Stabilizers in the clipped gauge

Nahum, Ruhman, Vijay, Haah, 2016
YL, Chen, Fisher, in preparation

Clipped gauge: on each site x, there are exactly two stabilizer endpoints (can be either Left or Right endpoints),
oL(X) + pr(x) = 2, for all x
which are required to be independent when pL(x) = 2 or pr(x) = 2.

A X A A X A

000000000000 000000000000
000000000000 000000000000

Maximally entangled state S(X) = Zy <= x [,OL(_V) - 1] Product state

Such a gauge fixing is always possible, and it gives a intuitive formula for the entanglement entropy:

Sa = (# of stabilizers in G that cross the boundary of A) / 2

=1l

A : a consecutive segment

The entanglement uniquely fix the “segments” in the clipped gauge!



Stabilizer length distribution w/ no measurements

. . - . . YL, Chen, Fisher, in preparation
Under unitary dynamics, the stabilizers grow in their length SHeEn i preparat
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Stabilizer length distribution w/ measurements
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YL, Chen, Fisher, in preparation

Under measurements, steady distribution have two pieces, “short” (power law) and “long” (peak at L/2)
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Stabilizer length distribution w/ measurements

YL, Chen, Fisher, in preparation

Under measurements, steady distribution have two pieces, “short” (power law) and “long” (peak at L/2)
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Summary

We looked at a simple model for unitary + measurement dynamics.

In the pure state, we found a phase transition from volume law to area law entanglement in
the steady state. This transition is not accessible to the density matrix.

Some understanding of the transition in the Clifford circuit.

Cao, Tilloy, De Luca, 1804.04638

O pe n q u eSti O n S Vasseur, Potter, You, Ludwig, 1807.07082

Chan, Nandkishore, Pretko, Smith, 1808.05949
Existence of the transition? Skinner, Ruhman, Nahum, 1808.05953

Analytic treatment? A solvable model that shows transition?
Is the transition universal?

s randomness important?

|s chaotic dynamics necessary? What about integrable dynamics? What if we
put in conservation laws?

Higher dimensions?

Are the two phases equivalent to something we already know (e.g. ETH and MBL), or are they
new dynamical phases?

Is the log L correction to the volume law universal?

Experimental realization?



