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Simulating the time evolution of quantum-many body systems 
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Quantum dynamics on a classical computer
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Directly simulate the time evolution within the  
full many-body Hilbert space

| (t)i = e�itH | (0)i

➡ Full diagonalization up to ~20 sites for spin-1/2

➡ Sparse methods up to ~30 sites for spin-1/2 
(dynamical typicality) 

=
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j1,...,jL

 j1,...,jL
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Exponential 
growth

Quantum dynamics on a classical computer



Area law in one dimensional systems: S(L) = const.
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Many body Hilbert space

Area law states

L

Entanglement

All area law states live in a tiny corner of the Hilbert space!
➡ Efficient representation as matrix-product states

ℋ

[M. Fannes et al. 92, Schuch et al ‘08] 

[Hastings ’07]



Matrix-Product States:

 j1,j2,j3,j4,j5 =
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[Verstraete et al ’04] 

d2L ! Ld2�2

Bond dimension ~ exp(entanglement) 

Matrix-product states

[M. Fannes et al. 92, Schuch et al ‘08] 
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Thermalization: Loss of initial local informations  

t

⇢Block = ⇢Thermal

| i S = 0

Ut = exp(�itH)
[non-integrable]

| i S = 0

[Srednicki, Deutsch, Rigol]



Quantum quench from product state

How to truncate entanglement (bond dimension) without  
sacrificing crucial information on physical (local) observables?

Thermal state 
(locally)
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“Information paradox"
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Consider a Hamiltonian H =
X

j

h
[j,j+1]

[F [r], F [r0]] = 0 ([G[r], G[r0]] = 0)
[G,F ] 6= 0

We observe  
but
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Decompose the Hamiltonian as 

Time evolving block decimation 



[Vidal ‘03]

Compression

➡ Destroys conservation laws of the microscopic 
  model  (e.g., energy conservation)

Time Evolving Block Decimation algorithm (TEBD)

ℋ

χ

UF =
Y

even r

exp(�iF [r]�t)

UG =
Y

odd r

exp(�iG[r]�t)

Time evolving block decimation 



Variational manifold: MPS states with fixed bond dimension 

 j1,j2,j3,j4,j5 = A[1]j1
↵ A[2]j2

↵� A[3]j3
�� A[4]j4

�� A[5]j5
�

[Haegeman et al. ’11, Dorando et al. ’09 ]

Time-dependent variational principle (TDVP) 

➡ Does not violate global conservation laws  
  (energy, particle number,…)

Classical Lagrangian

2

to a direct product of unit matrices representing the lo-
cal mixed states. When perturbed by a local operator at
the origin (e.g. imposing a spin up there), such a system
is expected to relax back to e↵ective local equilibrium
over a short timescale set by the local interactions. One
might hope that the local equilibrium state attained in
the process can again be described in terms of an MPO
(or purified state) with short range quantum correlations,
similar to the initial state. Unfortunately the exact time
evolution, leads to linear growth of the entanglement en-
tropy of the density matrix in time. Attempts to curb
the entanglement growth, while still capturing the exact
density matrix, have met with only partial success, al-
lowing to reduce the growth rate somewhat [23]. But the
fundamental problem of an exponentially growing bond
dimension remains.

Here we take a di↵erent approach, which aims to trun-
cate the entanglement growth within a systematic ap-
proximation, rather than attempting to capture the ex-
act dynamics. To this end we employ the time dependent
variational principle (TDVP) [24, 25] to time-evolve ma-
trix product states within a space of fixed bond dimen-
sion �, using an e�cient algorithm proposed by Haege-
mann et. al. [26]. The entanglement entropy in this ap-
proach is capped by log�. Hence, the MPS is not even a
nearly approximate description of the micro-state, which
would naturally evolve to volume law entanglement en-
tropy. In the language of time dependent matrix product
state calculations, the truncation error is bound to be-
come large after a short time.

Why then should the TDVP scheme nonetheless cap-
ture the long time dynamics of thermalizing systems? A
crucial feature for our purpose is that the TDVP respects
conservation laws regardless of the truncation. This is in
contrast to the common time evolving block decimation
(TEBD) scheme which violates them when the trunca-
tion error becomes large. Indeed the TDVP generates,
classical chaotic dynamics in the variational manifold,
driven by a classical Hamiltonian having the same sym-
metries as the original quantum Hamiltonian. Hence the
hydrodynamic behavior of local observables is guaran-
teed to emerge at long times even if we only keep a small
bond dimension. Of course, we are not guaranteed apri-
ori that the hydrodynamics in this scheme is governed by
the correct transport coe�cients. On physical grounds,
however, we expect that these are determined by quan-
tum processes that occur on rather short scales related to
the short thermalization time and possibly the thermal
coherence length. Such processes can in principle be cap-
tured by MPS with finite bond dimension. Increasing the
bond dimension of the variational family of states allows
to systematically improve the calculation and to assess
the accuracy of the result by checking for convergence
with �.

To test the new approach we consider the dynamics
of the Ising chain with both longitudinal and transverse

fields
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Here S
↵
i are spin-1/2 operators defined on site i. In our

calculations the chain length is N = 101. This model, in
a regime of parameters far from any integrable point is
commonly used as a testbed for thermalization dynamics.
A simplifying feature is the lack of any symmetries, which
leaves energy alone a conserved quantity.
We use the TDVP to compute the dynamics after a lo-

cal quench generated by local perturbation of an ensem-
ble of initial MPS that represents an infinite temperature
state. We compute two types of quantities. First we look
at relaxation of local observables following the quench to
find the expected long time tails associated with energy
di↵usion. From this we extract the energy di↵usion co-
e�cient. Second, we compute diagnostics of chaos from
which we extract a Lyapunov exponent and a ”butterfly
velocity” associated with the ballistic propagation of the
chaos front. Both types of quantities appear to converge
well with bond dimension �.
Method – We now describe the application of the TDVP
approach to the problem in some more detail. As men-
tioned, the TDVP imposes classical dynamics in a phase
space defined by the parameters of the variational state
| [↵] i through the e↵ective Lagrangian

L[↵, ↵̇] = h [↵] | i@t | [↵] i � h [↵] |H | [↵] i (2)

In our context the variational manifold is the space of
MPS with fixed bond dimension �:

| i =
X

�1···�N

A
1
�1

· · ·AN
�N

|�1 · · ·�N i (3)

The variational time evolution is implemented in each
step �t through application of e↵ective single site evolu-
tion operators on all the matrices A1 to AN in succession,
as prescribed in Ref. [? ]. To generate the e↵ective single
site evolution, the MPO representing the full evolution
operator of a time step is contracted from both sides with
the truncated MPS having the matrix corresponding to
that site removed.
Our goal is to compute the evolution of a perturba-

tion applied to a thermal ensemble. Thus we compute
the time dependent quantities following the quench as
averages over an ensemble of initial states chosen to rep-
resent the suitable canonical ensemble, perturbed by ap-
plication of a S

+ operator on one site in the middle of the
chain. Thus, for example, in the calculation shown in Fig.
we start from a random sample of product states, with
the direction of each spin on each site chosen indepen-
dently from a uniform distribution on the Bloch sphere.
This ensemble represents and infinite temperature state.
The quench consists of application of the single site S

+
i

Efficient evolution using a projected Hamiltonian 

Leviatan, FP,  Bardarson, Huse, Altman, arXiv:1702.08894
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Entanglement growth

Tilted field Ising model H =
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Ensemble of random product states

Time-dependent variational principle (TDVP) 



Tilted field Ising model H =
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Energy relaxation 

ED TDVP

Time-dependent variational principle (TDVP) 

Ensemble of initial states: S+
L/2| (0)i



XXZ model H =
X
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Time-dependent variational principle (TDVP) 

Ensemble of initial states: S+
L/2| (0)i

TDVP
Sz relaxation 

???
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Diagnostics of chaos 

Measure divergence between  
reduced density matrices 

| 1(t)i = e�iHt| i

| 2(t)i = e�iHt| i
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[44] We thank David Huse for alerting us to this point.
[45] R. Vosk, D. A. Huse, and E. Altman, Phys. Rev. X 5,

031032 (2015).
[46] A. C. Potter, R. Vasseur, and S. A. Parameswaran, Phys.

Rev. X 5, 031033 (2015).
[47] https://github.com/amilsted/evoMPS .

SUPPLEMENTARY MATERIAL

Distance measure analysis

Let | 1(0) i be a representative state in the ensemble of initial conditions. This state is perturbed by a unitary
operator localized to the left edge of the system to give | 2(0) i = �

x
0 | 1(0) i . We want to compare the time

evolution of the perturbed state | 2(t) i to that of the unperturbed state | 1(t) i . To this end we compute a
measure of distance between two reduced density matrices ⇢1(x, t) and ⇢2(x, t) that are obtained from the above
states by tracing out the first x sites of the spin chain.

The reduced density matrices can be written explicitly using the Schmidt decomposition of the states:

| ↵(x, t) i =

r(x,t)X

i=1

�(x, t)↵i | L
↵i(x, t) i | R

↵i(x, t) i (S1)

where ↵ = 1, 2. The superscripts L,R refer to the left and right Schmidt states respectively. Here r(x) is the
Schmidt rank of the state and �↵,i(x) are the Schmidt values. If | ↵ i is taken to be an unconstrained random
state then the Schmidt rank depends on the distance as r(x) = min(2x, 2N�x). Note that the second number in
the brackets, D(x) ⌘ 2N�x is the dimension of the Hilbert space of the right partition. Thus we always have
D(x) � r(x). If we constrain the evolution (e.g. using TDVP) to matrix product states with bond dimension � then
r(x) = min(2x, 2N�x

,�).
We are now ready to estimate the Frobenius measure of the distance between the two reduced density matrices.

d
2(x, t) = tr[(⇢R1 (x, t)� ⇢

R
2 (x, t))

2] (S2)

Later we will also consider normalized distance measures. The density matrices can be written explicitly using the
Schmidt decomposition corresponding to the partition at x:

⇢
R
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r(x,t)X
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↵i(x, t) i | R

↵i(x, t) i (S3)

Because the initial states were chosen randomly they would generically have close to the highest possible entangle-
ment, i.e. �↵i(x, t) ⇡ 1/

p
r(x, t). The purity of the reduced density matrices with these Schmidt values is

tr[⇢R↵ (x, t)
2] =

r(x)X

i=1

�
4
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rX
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1

r2
⇡ 1/r(x) (S4)

In order to estimate the distance measure, we also need to assess the overlap between the two distinct density matrices:

tr[⇢R1 (x, t)⇢
R
2 (x, t)] =
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�
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2,j(x, t)i|2 ⇡ 1
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rX
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|h R
1,i(x, t)| R

2,j(x, t)i|2 (S5)

The overlap in the above sum depends on how distinct are the two states | 1 i and | 2 i . If the cut is taken at early
time and a large distance x from the perturbation, before the e↵ect of the perturbation had a chance to a↵ect the
right partition, then the overlap is h R

1,i(x, t)| R
2,j(x, t)i = �ij . Hence in early times the cross term is 1 and it exactly

cancels the purities (S4) to give d
2(x, t) = 0. Conversely, at very late times the states are expected to evolve into

essentially uncorrelated random states in the Hilbert space. In this case the Schmidt states are also uncorrelated and
we should have |h R

1,i(x, t)| R
2,j(x, t)i|2 ⇡ 1/D(x).
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d
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R
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tr[(⇢R1 (x,1)� ⇢
R
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(S7)

Normalized measure of the distance 

Local unitary

x

⇢R1/2(x, t)



Diagnostics of chaos 
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⇥
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Propagation of chaotic front 

log
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⇤
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⇤

�x =
p

DBt
Front propagates ballistically and  
broadens diffusively:



Density matrix truncation (DMT) method

Exactly preserves expectation 
values of operators on up to 
three contiguous sites 

➡ Trace preserving
➡ Matching reduced 

density matrices 
➡ All 3-site density 

matrices are preserved
[White, Zaletel, Mong, Refael ’18]

t

Matrix Product Density Operator 
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Density matrix truncation (DMT) method

[White, Zaletel, Mong, Refael ’18]



Purification of a mixed state    on system    :  
           on           , such that  
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| ̃ih ̃| P [A ⇢ = TrA| ̃ih ̃|
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[1] [2] [3] [4] [5]
| ̃i :

Purified states can be expressed and manipulated using  
Matrix-Product State techniques [Verstraete et al ’05, Feiguin and White ’05, Barthel et al. ’09]

unitary ➡ Backwards evolution  
on ancilla optimal at  
infinite temperatures
[Karrasch, Bardarson, Moore ‘12] 
[Barthel ’13]

Purification of mixed states



Purification of mixed states

unitary

| ̃i :
Find variational a unitary minimizing the spacial  
entanglement of      : 

=

Alternatively, other networks are possibly to minimize  
the entanglement (e.g., MERA)



Cooling a purified state 

Obtain minimally entangled purified state as we cool down
T = 1 T = 0exp(�⌧H)
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➡ Entanglement  
of purification 
[Terhal et al. ’02 ] 



Time evolution of a purified state

Real time evolution
S+
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Real time evolution
S+

➡ Better cost function?
➡ Tails in the Schmidt spectrum
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Time evolution of a purified state



TDVP for Thermofield Double

Thermofield Double

  
• Evolve       with

• Expectations same on two subspaces – Numerical errors
=> Symmetrize
=> Additional constraint on null space

 [Haegeman et al PRL107,  070601 (2011)]
[Hallam,Morley, Green arXiv:1806.05204]



Discussion on Numerical Approaches to Dynamics

MPS based Lindblad dynamics 

2D Tensor-Product States 

Numerical Linked-Cluster Expansions

Truncated Wigner Approximation 
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