Unwinding Short-Range Entangled Phases of Matter The Dynamics of Quantum Information, KITP, 2018

Abhishodh Prakash

International Centre for Theoretical Sciences, Tata Institute of Fundamental Research

October 31, 2018

• Work in collaboration with Tzu-Chieh Wei (Stony Brook) and Juven Wang (IAS)

Talk based on *Unwinding Short-Range Entanglement*, Phys. Rev. B 98, 125108 (2018), arXiv:1804.11236 [quant-ph]

Phases of matter

- We are interested in *classifying* and *characterizing* various phases of matter.
- Focus on:
 - Quantum systems in thermodynamic limit,
 - Dynamics by *local* Hamiltonians.
 - Zero temperature quantum phase 1.
- "Two systems are said to be in the same gapped phase if their Hamiltonians can be interpolated without closing the gap."
- Q1: Why do we focus on gapped systems?
- Q2: Why is interpolation a good notion of equivalence?

Abhishodh Prakash (ICTS-TIFR) dyng18 October 31, 2018

Phases of matter

Reasonable (?) expectations:

- Expect: systems are in the same phase if they share some common rigid ²(possibly unknown) properties.
- Expect: systems in same quantum phase if their ground space shares same rigid properties.
- Expect: ground states share same properties if they can be smoothly deformed into each other.

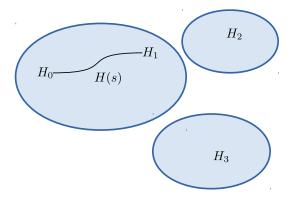
Proof

Claim: Ability to interpolate Hamiltonians \implies ability to smoothly deform ground states

- ullet Consider a family of local Hamiltonians ${\cal B}.$
- Let H_0 and $H_1 \in \mathcal{B}$ with spectral gap $\Delta_{0/1} \neq 0$.
- Let H_s be a gapped interpolation. $\Delta_s \neq 0 \ \forall \ s$
- Quantum adiabatic theorem (QAT): interpret s as time, change the Hamiltonian slowly at a rate $\nu(s) << \Delta(s) \implies$ always stay in the ground space.
- If gap closes at s^* in the path, $\Delta(s) \to 0$ as $s \to s^*$, for QAT to hold, the rate also vanishes $\nu(s) \to 0$ and it takes infinitely long to reach H_1 .

Gapped quantum phases of matter

In other words, if the subspace of gapped Hamiltonians in $\mathcal B$ is disconnected, the different disconnected pieces correspond to different gapped quantum phases of matter.



Long-Range and Short-Range Entangled Phases

- Two Hamiltonians are definitely in different phases if their ground state degeneracy (GSD) are different. Called long-range entangled (LRE) phases.
- This happens if the Hamiltonians in consideration have a global symmetry G that is spontaneously broken (SSB) to a H^3 . GSD = |G/H|.
- Most well known, observed, studied mechanism for phases.
- Topological order: GSD without symmetries or SSB.
- ullet Phases with no broken symmetries, unique ground state (GSD = 1) are called short-range entangled phases (SRE).

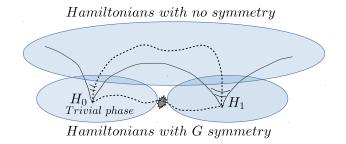
SRE and SPT phases

Some facts about SRE phases:

- Ground states are unique on any closed manifold.
- Invertible phases. Given a SRE phase A, there exists an inverse phase A_{inv} whose stacking belongs to the trivial phase.
- A system belongs to a trivial phase if its ground state can be adiabatically interpolated to a product state. $|\Phi\rangle = |\varphi_1\rangle \otimes |\varphi_2\rangle \dots$

Symmetry Protected Topological Phases

- SRE phases of Hamiltonians with some global symmetry G.
- Partial classification: d+1 dim SPT phases are classified by $H^{d+1}(G,U(1))$. Focus on these
- Can be connected to trivial phase in a larger space of Hamiltonians without symmetries i.e. by explicitly breaking symmetry.



Q) How much symmetry should be explicitly broken to connect a non-trivial G SPT phase to a trivial one 4 ?

Consider a SPT phase with symmetry G classified by the class $[\nu] \in H^{d+1}(G, U(1))$. We want to know if breaking symmetry down to subgroup $K \subset G$ makes the SPT phase trivial.

Q) How much symmetry should be explicitly broken to connect a non-trivial G SPT phase to a trivial one 4 ?

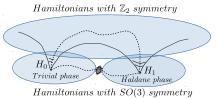
Consider a SPT phase with symmetry G classified by the class $[\nu] \in H^{d+1}(G, U(1))$. We want to know if breaking symmetry down to subgroup $K \subset G$ makes the SPT phase trivial.

A)Yes! if the class in $H^{d+1}(K, U(1))$ obtained by restricting G to K is trivial.

Example of unwinding by breaking

Consider the *Haldane phase*, a non-trivial SPT phase protected by SO(3). Breaking SO(3) to $\mathbb{Z}_2 \times \mathbb{Z}_2$ is insufficient to unwind the Haldane phase but \mathbb{Z}_2 is.

Hamiltonians with $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry H_0 H_0 H_0 H_1 H_2 H_3 H_4 H_4



Q) How much symmetry should be explicitly broken to connect a non-trivial G SPT phase to a trivial one 5 ?

Consider a SPT phase with symmetry G classified by the class $[\nu] \in H^{d+1}(G, U(1))$. We want to know if breaking symmetry down to subgroup $K \subset G$ makes the SPT phase trivial.

A)Yes! if the class in $H^{d+1}(K, U(1))$ obtained by restricting G to K is trivial.

Given $K \subset G$, can define an injective homomorphism $i: K \to G$,

$$[i^*\nu] = 1 \in H^{d+1}(K, U(1))$$

Q) How much symmetry should be explicitly broken to connect a non-trivial G SPT phase to a trivial one 5 ?

Consider a SPT phase with symmetry G classified by the class $[\nu] \in H^{d+1}(G, U(1))$. We want to know if breaking symmetry down to subgroup $K \subset G$ makes the SPT phase trivial.

A)Yes! if the class in $H^{d+1}(K, U(1))$ obtained by restricting G to K is trivial.

Given $K \subset G$, can define an injective homomorphism $i: K \to G$,

$$[i^*\nu] = 1 \in H^{d+1}(K, U(1))$$

This is true when K=1, the trivial group. We can definitely unwind any SPT phase by breaking all symmetries.

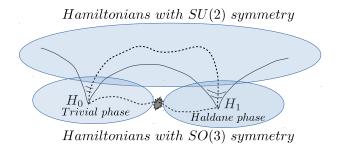
Q) Can we unwind SPT phases without breaking symmetry but rather extending it?

⁶arXiv:1705.06728 [cond-mat.str-el]

- Q) Can we unwind SPT phases without breaking symmetry but rather extending it?
- A) Yes! This was proven by Wang, Wen and Witten ⁶.

Example of unwinding by extension

Consider the *Haldane phase* protected by SO(3). Can unwind the phase by extending SO(3) to SU(2).



- Q) Can we unwind SPT phases without breaking symmetry but rather extending it?
- A) Yes! This was proven by Wang, Wen and Witten ⁷.

⁷arXiv:1705.06728 [cond-mat.str-el]

- Q) Can we unwind SPT phases without breaking symmetry but rather extending it?
- A) Yes! This was proven by Wang, Wen and Witten 7 . Given a group G, and a class $[\nu] \in H^{d+1}(G,U(1))$ that classifies the G- SPT phase, there exists a bigger group \tilde{G} and a surjective homomorphism $s: \tilde{G} \to G$ such that

$$[s^*
u] = 1 \in H^{d+1}(\tilde{G}, U(1))$$

- Q) Can we unwind SPT phases without breaking symmetry but rather extending it?
- A) Yes! This was proven by Wang, Wen and Witten 7 . Given a group G, and a class $[\nu] \in H^{d+1}(G,U(1))$ that classifies the G- SPT phase, there exists a bigger group \tilde{G} and a surjective homomorphism $s: \tilde{G} \to G$ such that

$$[s^*\nu] = 1 \in H^{d+1}(\tilde{G}, U(1))$$

This fits into a short exact sequence

$$1 \longrightarrow K \stackrel{i}{\longrightarrow} \tilde{G} \stackrel{s}{\longrightarrow} G \longrightarrow 1.$$

15/27

- Q) Can we unwind SPT phases without breaking symmetry but rather extending it?
- A) Yes! This was proven by Wang, Wen and Witten 7 . Given a group G, and a class $[\nu] \in H^{d+1}(G,U(1))$ that classifies the G- SPT phase, there exists a bigger group \tilde{G} and a surjective homomorphism $s: \tilde{G} \to G$ such that

$$[s^*
u] = 1 \in H^{d+1}(\tilde{G}, U(1))$$

This fits into a short exact sequence

$$1 \longrightarrow K \stackrel{\text{\tiny i}}{\longrightarrow} \tilde{G} \stackrel{\text{\tiny s}}{\longrightarrow} G \longrightarrow 1.$$

Wang, Wen and Witten use this information to produce symmetric, gapped boundary conditions for SPT phases. (More on this later)

Demonstration of unwinding by extension

We demonstrate the Wang, Wen, Witten result explicitly in the case of $1\!+\!1$ D SPT phases using a quantum circuits.

Demonstration of unwinding by extension

We demonstrate the Wang, Wen, Witten result explicitly in the case of $1+1\ D$ SPT phases using a quantum circuits.

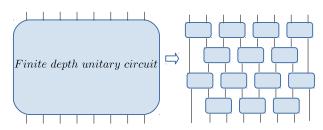
Hamiltonian can be interpolated \implies ground state mapped to product state using a finite time evolution operator, $U(t) \cong \mathcal{T} \exp\left(-i\int_0^t ds H(s)\right)$

Demonstration of unwinding by extension

We demonstrate the Wang, Wen, Witten result explicitly in the case of $1+1\ D$ SPT phases using a quantum circuits.

Hamiltonian can be interpolated \implies ground state mapped to product state using a finite time evolution operator, $U(t) \cong \mathcal{T} \exp\left(-i\int_0^t ds H(s)\right)$

U(t) can be written as a FDUC:.



Trivial phase \implies FDUC : GS \rightarrow product state

Three roads to unwinding

Demonstrate three roads to unwinding:

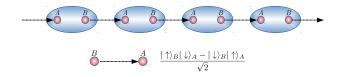
- Inversion
- Explicit symmetry breaking.
- Symmetry extension

Three roads to unwinding

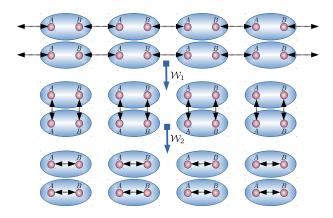
Demonstrate three roads to unwinding:

- Inversion
- Explicit symmetry breaking.
- Symmetry extension

Demonstrate using AKLT-like model



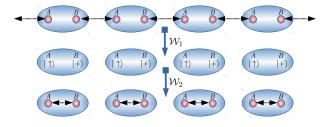
Unwinding by inversion



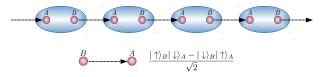
 W_i are products of entanglement-swap operators which are SO(3) invariant.

Unwinding by explicitly breaking symmetry

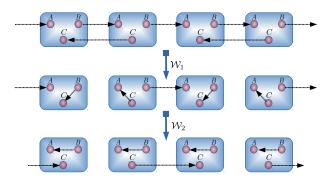
Break all symmetries: $1 \stackrel{i}{\longrightarrow} SO(3)$



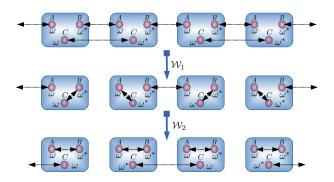
Haldane chain example: $SU(2) \stackrel{s}{\longrightarrow} SO(3)$.



Add ancilla to extend symmetry

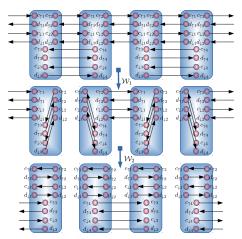


 W_i are products of entanglement-swap operators which are SU(2) invariant.



- ullet Can repeat this for well known representative states of any finite G 1+1D SPT phase.
- $H^2(G, U(1))$ which classifies 1+1D SPT phases also classifies projective representations of G.
- Theorem: Every G has atleast 1 $Schur\ cover$ which contains both linear and projective representations of G. This is precisely the extension \tilde{G} we were looking for.

Can repeat this for specific classes of fermionic SPT phases constructed by layering Majorana chains.



Symmetric gapped boundaries of SPT phases

- SPT phases have weird boundaries because of the presence of an 't Hooft anomaly classified by $[\nu] \in H^{d+1}(G, U(1))$.
- Boundaries have 'persistent order'- gapless, SSB, topologically ordered.
- Symmetric, gapped boundary possible when topologically ordered.
- Powerful tool to classify bulk SPT phase, especially in 3d.⁸

Abhishodh Prakash (ICTS-TIFR)

Symmetry extension symmetric gapped boundary conditions

- Extended symmetries that unwind an SPT phase help construct symmetric, gapped, topologically ordered boundaries.
- Consider 3d *G* SPT phase classified by $[\nu] \in H^4(G, U(1))$
- ullet Let $ilde{G}$ be the extension that unwinds it

$$1 \longrightarrow K \stackrel{i}{\longrightarrow} \tilde{G} \stackrel{s}{\longrightarrow} G \longrightarrow 1.$$

• Starting with a \tilde{G} invariant 2d theory, gauge subgroup K. \tilde{G}/K is the global symmetry that acts on the anyons of the K gauge theory.

25/27

Outlook

- Observation: Symmetry extension that unwinds inherently fermionic SPT phases have generators that do not commute with fermion parity.
- Can this be used to recover known boundary states in a simpler language? Newer states?
- Classifications?
- IR Dualities?
- Interesting examples of deconfined criticality?

Thank you!

27 / 27