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Characteristic features of MBL systems: 
- some results for the 'standard' model of MBL

MBL in 1D disordered Hubbard model with potential disorder
- relation to experiments on cold atoms
- at large disorder charge correlations non-ergodic and spin corr. ergodic ?
- power-law growth of the entanglement entropy

Local integrals of motion - disordered Heisenberg: Hubbard
- counting of LIOM in the Heisenberg model in magnetic field
- missing LIOM in the potentially disordered Hubbard chain

Spin subdiffusion in disordered Hubbard chain - effective spin model
- reduction of Hubbard model to effective spin model
- subdiffusion – single: multiple weak-link scenario 



What is MBL and why is it so interesting ?

Nonergodic behaviour in a macroscopic many-body quantum system: T > 0  
- non-interacting (NI) fermions on disordered lattice:  Anderson localization
- integrable many-body models: Heisenberg chain etc…
- systems undergoing phase transition (macroscopic ordering at T < Tc)
- many-body-localized systems = correlations + large disorder  ?

Basko, Aleiner, Altshuler (2006):  
- MI transition at T=T* at fixed disorder  W
- MI transition at W=Wc even at  T = ∞ !

Does MBL exist (phase transition or crossover ..) ? qualitative 
or quantitative phenomenon ?

Which are properties of the ergodic and non-ergodic phase ?



‘Standard ‘ model of MBL

Bar Lev et al, PRL (2015)

1D model of interacting spinless fermions + Anderson disorder:
equivalent to anisotropic Heisenberg model + random fields: Δ = V/(2t)

T ~ ∞:  phase diagram (approximate) 

MBL phase W > Wc:
- Poisson level statistics
- vanishing d.c. transport
- area (log) law for entanglement entropy increase   
- non-ergodic behaviour of correlation functions
- no thermalization
- local integrals of motion (LIOM)
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Numerical methods for dynamics of correlated systems 

MBL problem: dynamics - long times = very low frequencies !
+ large sizes ?

Example: 1D (random) Heisenberg model



Characteristic features: dynamical conductivity and d.c. transport

Barišić et al, PRB (2010, 2016)

Steinigeweg et al, PRB (2016)

vanishing d.c. transport σ0 for W > Wc ~ 5 

transition :
sharp  crossover ??

log !

theory : experiment

T >> 1:

subdiffusion ??

Kondov, 2015



MCLM: L = 26 

NI particles: response for W = 0 

normal metal: 
diffusion q ~ 0 pole for W < Wc

MBL:
δ(ω) peak for W > Wc at all q !

PP, Herbrych, PRB (2017)

W=0

W=2

W=4

T = ∞,  Δ = 1 

Dynamical structure factor



Mierzejewski et al., PRB (2016) density-wave (imbalance) correlation 
function: T = ∞, V = t (Δ=0.5), ED,  L = 16  

a) real-time dynamics:

oscillations emerging from NI physics

b) ‘quasi’-time dynamics:

the same long-time variation

nonergodic (MBL) phase: W > W* ~ 4
C0 = C(t=∞) > 0  + anomalous time 
dependence  

Characteristic features: non-ergodic behaviour



Cold atoms (fermions) on 1D optical lattice

Schreiber et al, Science (2015): K40 atoms on 1D optical lattice 
+  quasi-periodic (Andre-Aubry) disorder

(charge) density imbalance I(t): 
non-ergodic for  large disorder Δ

model: 1D Hubbard model with quasi-periodic (random) potential 



MBL in 1D Hubbard chain

PP, Barišić, Žnidarič, PRB (2016) 

Hubbard model: more degrees of freedom – charge     +      spin 

numerical calculation of imbalance correlations: MCLM

charge  (CDW) correlations:

U=4, n=1, L= 8 - 14

W=2: ergodic

W=10: non-ergodic

expected ?

potential disorder only 



spin  (SDW) correlations:

U=4, n=1, L=8-14 

W=2: ergodic

W=10: ergodic ?

U=4,  L=14 

charge: Wc ~ 4-6

spin: no transition

no full MBL !



varying U: from Anderson localization to MBL ?

charge spin 

W > Wc : large disorder

U > 0 induces weak decay of CDW,

charge localization remains

U > 0 leads to decay of SDW

spin behaves ergodic

W = 6

disorder induced charge – spin separation !?



Dynamical charge and spin conductivities:

d.c. charge and spin conductivity:

- σspin(0) always finite ?

- σcharge(0) – at W ~ 4 transition
or crossover ? 

log !

charge spin



Entanglement entropy:

full MBL:

the case with random field disorder

Hubbard chain – potential disorder

Conclusion: no full MBL - due to remaining SU(2) symmetry ?
is this explanation enough ?



Local integrals of motion  

Mierzejewski, PP, Kozarczewski,  PRB (2018) 

Integrals of motion:

Constructing IOM, starting from general local operator A on M << L sites:  

= IOM, typically nonlocal

if overlap finite for L >> M



Constructing and counting  (L)IOM  

1) Define  an orthogonal set of operators out of traceless local {A} on M sites   

2) Find the time-averaged (L)IOM by diagonalizing H on L sites: 

3) Diagonalize the new matrix of (L)IOM

4) Express (L)IOM in terms of local and nonlocal operators



LIOM in ‘standard’ MBL model  

number of LIOM

identity

measure of locality

MBL: 
L >> 1: finite Λ

large disorder W>> Wc

V = 2Δ =1



LIOM in disordered Hubbard chain  

adding (strong) random field

not enough LIOM for full MBL !



Spin subdiffusion in disordered Hubbard model 

Kozarczewski, PP, Mierzejewski, PRL (2018) 

solve U = 0 (Anderson) problem + rewrite Hubbard in Anderson basis + 

+ assume frozen charge configuration:  na = 0,1 

SU(2) invariant interaction term
- ferromagnetic !
- acting only on singly 

occupied sites  !



N = 2 electrons - Hubbard model 

s.p. localization length



Squeezed spin model 

average spin spacing:

~ probability for neighbors at distance x

Probability distribution for effective n.n.  J:  singular ! 

Strong disorder + d >> 1:  

actual distribution of J
Hubbard:  N = 2

singly occupied sites

dimensionless

T >> 1:

~ effective loc. length



Weak – link scenario  

Single weakest link: on M sites

probability distr.. for weakest link
on M sites

characteristic propagation time
of spin perturbation: 

weakest link

spatial extent of spin perturbation in time t subdiffusion



Multiple weak links:  classical model of random traps:

squeezed Heisenberg Hubbard model

Machta, 1985



Spin subdiffusion  

local spin correlations

subdiffusion

squeezed Heisenberg Hubbard model
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Summary

MBL in 1D disordered Hubbard chains 
- potential (Anderson) disorder: CDW and SDW decay qualitatively different
- at large disorder charge nonergodic, spin ergodic
- disorder induced charge – spin separation (at all energy scales)  
- there is no full MBL, but rather partial freezing 

LIOM in random Heisenberg and Hubbard chain 
- counting of LIOM in’standard’  random Heisenberg model – full MBL
- number of LIOM in Hubbard  << full MBL

Spin subdiffusion in disordered Hubbard model 
- effective spin model – squeezed isotropic Heisenberg model
- subdiffusion due to singular distribution of effective exchange coupling

Open questions      
- are there higher order correction ?  
- effect of charge-spin coupling  - does charge remain localized ??


