Melting at the Core-Mantle Boundary and the Topography of the Ultralow Velocity Zone

Sash Hier-Majumder

CIDER workshop, June, 2008

Ultralow velocity zone at the coremantle boundary

- Thickness varies between 5-40 km
- Estimated melt volume fraction between 5-30%
- Logarithmic ratio of seismic velocities vary between 2.5-3.2

Garnero [2004]

Williams and Garnero [1996]

Structure of the basal layer

- Lateral variation in topography
- Lower viscosity compared to the mantle
- Low seismic velocity

Jellinek and Manga [2004]

Outline

A new, microstructure based, model for seismic velocities

- Estimated melt volume fraction at the ULVZ
- Influence of surface tension on the topography of the ULVZ
- Influence of viscosity contrast on the topography of the ULVZ

Microstructure modeling

- Elastic wave velocities in two-phase media is controlled by the area of contact or contiguity between adjacent particles [*Takei, 1998, 2000*].
- Steady-state contiguity is achieved by viscous sintering of the multiphase aggregate

Disaggregation

Hier-Majumder et al. [2005]

- Grains are contiguous at melt fractions below the disaggregation melt fraction
- At higher melt fractions, grains are suspended in the melt

Scott and Kohlstedt [2006]

Microstructure

Within the grains and the melt

$$\begin{array}{rcl} 0 & = & \boldsymbol{\nabla} \cdot \boldsymbol{u} \\ 0 & = & \boldsymbol{\nabla} \cdot \boldsymbol{T} \end{array}$$

Boundary condition

$$\Delta \mathbf{T}^{k} \cdot \mathbf{n}^{k} = \gamma^{k} (\nabla \cdot \mathbf{n}^{k}) \mathbf{n}^{k} - \tilde{\nabla} \gamma^{k}$$
$$0 = \Delta \mathbf{u}^{k}$$

Kinematic relation

$$0 \qquad = \quad \frac{\partial F^k}{\partial t} + \boldsymbol{u}^k \cdot \boldsymbol{\nabla} F^k$$

Midrange forces

Interaction between grains gives rise to variation in surface tension

Chen et al.[2004]

Steady-state grain shape

- $\boldsymbol{u}^{\boldsymbol{g}} \cdot \boldsymbol{n} = 0$
- $u^m \cdot n = 0$ No-slip boundary condition
- $\boldsymbol{u}^{g}\cdot\boldsymbol{\hat{\theta}}-\boldsymbol{u}^{m}\cdot\boldsymbol{\hat{\theta}} = 0$ $\boldsymbol{\hat{\theta}}\cdot\boldsymbol{\Delta}\boldsymbol{T}\cdot\boldsymbol{n}+\boldsymbol{\hat{\theta}}\cdot\boldsymbol{\nabla}\boldsymbol{\gamma} = 0$ Marangoni condition

$$y = \gamma_0 + \sum_n \gamma_n P_n(\cos\theta)$$

$$F(r,\theta) = r - a - \epsilon \sum_n f_n(\theta)$$

Steady-state grain shape

$$\frac{d}{d\theta} \left(\sin \theta \frac{df_n}{d\theta} \right) = P_n(\cos \theta) \sin \theta \left(2a - 3Ca \frac{\gamma_n a^2 \left[(n+1)\lambda + n \right]}{(1+\lambda)(2n+1)} \right)$$

Faceting during sintering

Numerical solution

$$\boldsymbol{u}^{i}(\boldsymbol{r}_{0}) = \frac{2}{1+\lambda} \left[\boldsymbol{u}^{\infty}(\boldsymbol{r}_{0}) - \frac{1}{4\pi Ca} \sum_{k} \int_{\Gamma^{k}} \Delta \boldsymbol{f}^{k}(\boldsymbol{r}) \cdot \boldsymbol{J}(\boldsymbol{r}, \boldsymbol{r}_{0}) d \Gamma^{k} \right] \\ + \frac{(1-\lambda)}{\pi(1+\lambda)} \sum_{k} \int_{\Gamma^{k}} \boldsymbol{n}^{k} \cdot \boldsymbol{K}(\boldsymbol{r}, \boldsymbol{r}_{0}) \cdot \boldsymbol{u}^{k}(\boldsymbol{r}) d \Gamma^{k} \\ 0 = \frac{\partial F^{k}}{\partial t} + \boldsymbol{u}^{k} \cdot \boldsymbol{\nabla} F^{k}$$

$$J(r, r_0) = -I \ln(|r - r_0|) + \frac{(r - r_0)(r - r_0)}{(|r - r_0|)^2}$$

$$K(r, r_0) = -4 \frac{(r - r_0)(r - r_0)(r - r_0)}{(|r - r_0|)^4}$$

Boundary Elements Model

- Discretizing the BIE
- Evaluating singular integrals
- Updating the position of Lagrangian marker points

Discretization

- Collocating the poles at nodes
- Cubic spline interpolation of position, allows analytical evaluation of tangent, normal, and curvature
- Linear interpolation of the velocity field

Integral evaluation

- Gaussian quadrature within nonsingular elements
- Radial integration method [Gao, 2006], within singular elements
- Velocity optimized using a quadratic optimization scheme to ensure

 $\boldsymbol{u} \cdot \boldsymbol{n} = 0$

Updating shape

- Update nodal coordinates using forward Eulerian integration
- Remove high curvature
 nodes
- Marker position updated until convergence is attained

Contiguity

Contiguity and elastic properties

Effective shear modulus

Viscosity and elastic properties

Contiguity and melt fraction

 $\psi = 1 - A \sqrt{\phi}$

(at a given viscosity ratio)

Extent of melting in the ULVZ

 Estimate from inclusion models 5-30 volume % melt for 3:1 reduction of shear and P wave velocities

Extent of melting in the ULVZ

(In (V_s)/d(In(V_p))

σ

- Current model indicates between 10-15% melting for 3:1 reduction of S and P wave velocities
- The ULVZ is molten, but probably not disaggregated

3.250n **D** 0.09 **×**0.15 \times_{\times} жх× xХ 2.917 х •• O 60 n Х 00 х O 2.583 0 0 2.250[.] 8 n A $\log(\lambda)$

Masters et al [2000]

Hier-Majumder [2008]

Influence of melting on the topography of the ULVZ

•Coupled effect of surface tension, compaction, buoyancy, and deformation

•Mantle flow and viscosity contrast between the ULVZ and the ambient mantle

Two-phase theory

- Coupled viscous flow of the melt and the matrix
- Surface tension balance pressure, viscous stress, and body forces

 Incorporates both melt geometry and disaggregation.

Governing equations (1D)

Conservation of Mass

$$\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial y} \left((1 - \phi) w \right)$$

Force balance ('action-reaction')

$$\xi(1-\phi)\frac{\partial^2 X}{\partial \phi^2} \left(\frac{\partial \phi}{\partial y}\right) + \frac{4}{3}\frac{\partial}{\partial y} \left(\frac{1-\phi^2}{\phi}\frac{\partial w}{\partial y}\right) - R(1-\phi) - \frac{4}{3}\frac{w}{\phi^2} = 0$$

Stress drop condition

$$\frac{\partial \chi}{\partial \phi} = -\Delta P + B \frac{D_m \phi}{Dt}$$

Bercovici et al. [2001]

Some parameters

Modulates surface tension

Controls buoyancy

Distribution of a neutrally buoyant melt layer

Storage of dense melt

Melt fraction and viscosity

Low viscosity dense layer

Q = Sink strength

$$\begin{aligned} \tau_{r\theta}^{i} &= \tau_{r\theta}^{m} \\ \boldsymbol{u}^{i} \cdot \boldsymbol{\hat{\theta}} &= \boldsymbol{u}^{m} \cdot \boldsymbol{\hat{\theta}} \\ \boldsymbol{\hat{z}} \cdot \Delta \boldsymbol{T} \cdot \boldsymbol{n} &= \Delta \rho g h \end{aligned} \qquad \text{Boundary conditions}$$

Conclusions

- Observed range of S and P-wave velocity changes can be explained by 10-15% melting
- The ULVZ is likely molten but not disaggregated
- Topography of the ULVZ is likely influenced by
 - Tension on grain boundaries
 - Plume flux
 - Density and viscosity contrast

Lamb's solution for a single particle

$$P(r,\theta) = \sum_{n} p_{n}$$

$$u(r,\theta) = \sum_{n} \left(\frac{(n+3)r^{2} \nabla p_{n}}{2\mu(n+1)(2n+3)} - \frac{nrp_{n}}{\mu(n+1)(2n+3)} + \nabla \Phi_{n} \right)$$

$$p_{n} = a_{n}r^{n}P_{n}(\cos\theta)$$

$$\Phi_{n} = b_{n}r^{n}P_{n}(\cos\theta)$$

$$p_{-n-1} = \frac{A_{n}}{r^{n+1}}P_{n}(\cos\theta)$$

$$\Phi_{-n-1} = \frac{B_{n}}{r^{n+1}}P_{n}(\cos\theta)$$

Dihedral angle

