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Ultralow velocity zone at the core-
mantle boundary

● Thickness varies 
between 5-40 km

● Estimated melt 
volume fraction 
between 5-30%

● Logarithmic ratio of 
seismic velocities 
vary between 2.5-3.2

Williams and Garnero [1996]

Garnero 
[2004]



  

Structure of the basal layer
● Lateral variation in 

topography
● Lower viscosity 

compared to the 
mantle

● Low seismic velocity

Jellinek and Manga [2004]



  

Outline
● A new, microstructure based, model for seismic 

velocities
● Estimated melt volume fraction at the ULVZ
● Influence of surface tension on the topography 

of the ULVZ
● Influence of viscosity contrast on the 

topography of the ULVZ



  

Microstructure modeling
● Elastic wave velocities  in two-phase media is 

controlled by the area of contact or contiguity 
between adjacent particles [Takei, 1998, 2000].

● Steady-state contiguity is achieved by viscous 
sintering of the multiphase aggregate



  

Disaggregation
● Grains are contiguous at melt 

fractions below the 
disaggregation melt fraction

● At higher melt fractions, 
grains are suspended in the 
melt

Scott and Kohlstedt [2006]

Hier-Majumder et al. [2005]



  

Interfaces in rocks
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Microstructure
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Midrange forces

Chen et al.[2004]

– Interaction between grains 
gives rise to variation in 
surface tension



  

Steady-state grain shape
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Faceting during sintering

n =4 n =3
Surface tension gradient
Flow field within grain



  

Numerical solution
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Nondimensional parameters
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Boundary Elements Model
● Discretizing  the BIE

● Evaluating singular 
integrals

● Updating the position 
of Lagrangian marker 
points



  

Discretization
● Collocating the poles at 

nodes
● Cubic spline interpolation 

of position, allows 
analytical evaluation of 
tangent, normal, and 
curvature

● Linear interpolation of  
the velocity field



  

Integral evaluation
● Gaussian quadrature 

within nonsingular 
elements

● Radial integration 
method  [Gao, 2006], 
within singular elements

● Velocity optimized using 
a quadratic optimization 
scheme to ensure 

u⋅n=0



  

Updating shape
● Update nodal 

coordinates using 
forward Eulerian 
integration

● Remove high curvature 
nodes

● Marker position updated 
until convergence is 
attained



  

Contiguity

=
Ag g
Ag gAgm
Hier-Majumder  [2008]



  

Contiguity and elastic properties
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Viscosity and elastic properties
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Contiguity and melt fraction

=1−A

Yoshino et al [2005]

(at a given viscosity ratio)



  

Extent of melting in the ULVZ
● Estimate from inclusion 

models 5-30 volume % 
melt for 3:1 reduction of 
shear and P wave 
velocities
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Williams and Garnero [1996]

Masters et al [2000]



  

Extent of melting in the ULVZ
● Current model indicates 

between 10-15% melting for 
3:1 reduction of S and P 
wave velocities

● The ULVZ is molten, but 
probably not disaggregated
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Influence of melting on the 
topography of the ULVZ

●Coupled effect of surface tension, compaction, 
buoyancy, and deformation
●Mantle flow and viscosity contrast between the 
ULVZ and the ambient mantle



  

Two-phase theory
● Coupled viscous flow of 

the melt and the matrix
● Surface tension balance 

pressure, viscous stress, 
and body forces 

● Incorporates both melt 
geometry and 
disaggregation.



  

Governing equations (1D)
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Bercovici et al. [2001]



  

Some parameters
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Modulates surface tension

Controls buoyancy

Compaction length of the solid



  

Distribution of a neutrally buoyant 
melt layer

Melt volume fraction

H
ei
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t

Hier-Majumder et al [2006]

Melt volume fraction



  

Storage of dense melt

Hier-Majumder et al. [2006]
=
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Melt fraction and viscosity

Scott and Kohlstedt, [2006].



  

Low viscosity dense layer
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=0.01

Q = 5
Q = 1

Variation in normalized plume flux

Variation in viscosity contrast



  

Conclusions
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● Observed range of S and 
P-wave velocity changes 
can be explained by 10-
15% melting

● The ULVZ is likely molten 
but not disaggregated

● Topography of the ULVZ is 
likely influenced by
– Tension on grain 

boundaries
– Plume flux
– Density and viscosity 

contrast



  

Lamb’s solution for a single particle
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