#### Friction, Failure, and Dynamics of Granular Materials KITP, Friction Fracture and Earthquakes December 8, 2005

R.P. Behringer

Duke University

Support: NSF, NASA

Collaborators: Karen Daniels, Junfei Geng,

Dan Howell, Lou Kondic, Trush

Majmudar, Guillaume Reydellet, Brian

Utter, Eric Clement, Stefefan Luding

#### OTILINE

- Why granular materials?
- open questions of relevant scales Where granular materials and molecular matter part company-
- Review of models for force transmission
- Obtaining vector forces
- Force distributions and correlations
- Diffusion, dynamics, fluctuations in shear
- Dynamical transition: freezing by heating in a sheared and shaken system
- Force Transmission (via an older experimental approach)
- Conclusions

#### **Examples of Granular Materials**

- Earthquake gouge
- Avalanches and mudslides
- Food and other natural grains: wheat,
- Industrial materials: coal, ores,.
- Soils and sands
- Pharmaceutical powders
- Dust
- e.g. fluidized beds Chemical processing

#### What are Granular Materials?

- Collections of macroscopic 'hard' (but not rigid) particles: interactions are dissipative
- Classical h→ 0
- A-thermal  $T \rightarrow 0$
- Draw energy for fluctuations from macroscopic flow
- Exist in phases: granular gases, fluids and solids
- Large collective systems, but outside normal statistical

#### **Questions**

- · Fascinating and deep statistical questions
- What is the nature of granular friction?
- -what is their What is the nature of granular fluctuations range?
- Is there a granular temperature?
- Phase transitions
- Jamming and connections to other systems: e.g. colloids, foams, glasses,.
- -at what scales? The continuum limit and 'hydrodynamics-
- What are the relevant macroscopic variables?
- Novel instabilities and pattern formation phenomena

#### Practical Issues

- o Massive financial costs Claim:
- ~\$1 Trillion/year in US for granular handling
- o Failures are frequent, typical facilities operate at only ~65% of design
- o Soil stability is difficult to predict/assess
- How is stress/information transmitted in granular materials?

#### Problems closer to (my) home





### ...And a bit further from home...





### Assessment of theoretical understanding

- Basic models for dilute granular systems are reasonably successful
- For dense granular states, theory is far from settled, and under intensive debate and scrutiny
- Current ability to predict for dense granular states is poor relative to other systems fluids

## **Granular Material Phases-Dense Phases**

Granular Solids and fluids much less well understood than granular gases

Forces are carried preferentially on force chains > multiscale phenomena

Deformation leads to large spatio-temporal fluctuations

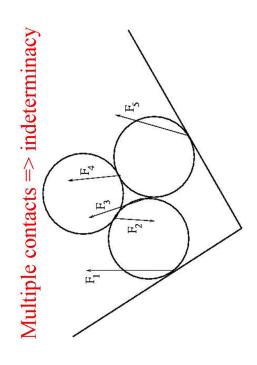
#### **Granular Material Phases-Dense Phases** Continued

preparation history Friction and extra contacts → matters Jamming/glassy behavior near solid-fluid transition (Liu, Nagle, O'Hern, Bouchaud et al.)

-interesting connections to plasticity in disordered solids (e.g. Falk, Langer, Lemaitre, Maloney... In most cases, a statistical approach may be the only possible description

A look at some properties that affect dense

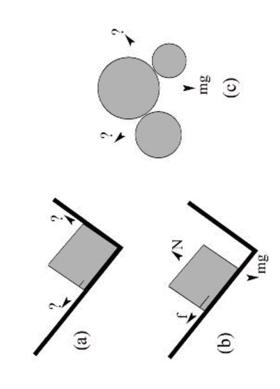
granular states



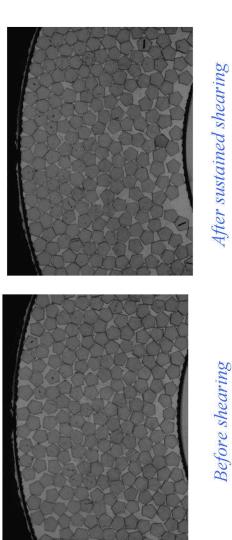
Note: 5 contacts => 10 unknown force components.

3 particles => 9 constraints

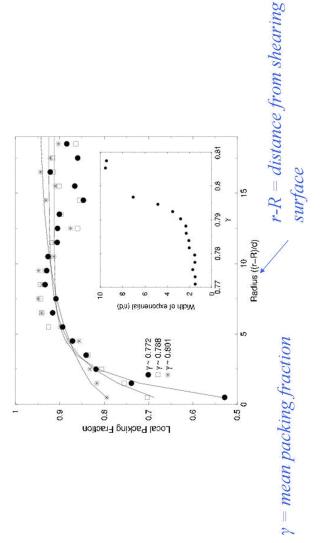


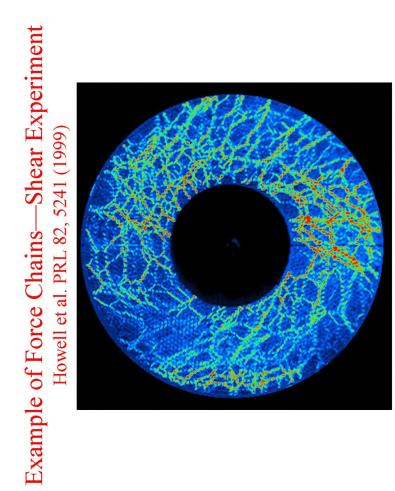


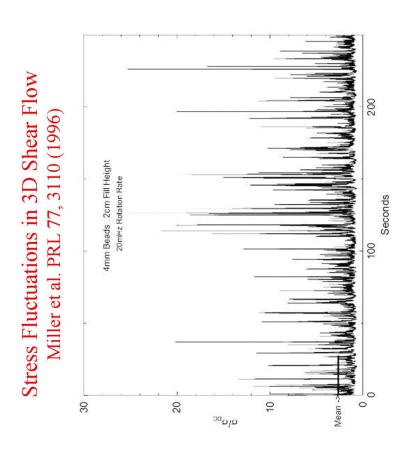
#### Dilation under shear



Density profiles following sustained shearing









Understanding Static Stress Balance-Micromechanics

- Four unknown stress components (2D)
- Three balance equations - Horizontal forces
- Vertical forces
  - Torques
- Need a constitutive equation

$$\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xz}}{\partial z} = 0 \quad \frac{\partial \sigma_{xz}}{\partial x} + \frac{\partial \sigma_{zz}}{\partial z} = 0 \quad \sigma_{xz} = \sigma_{zx}$$

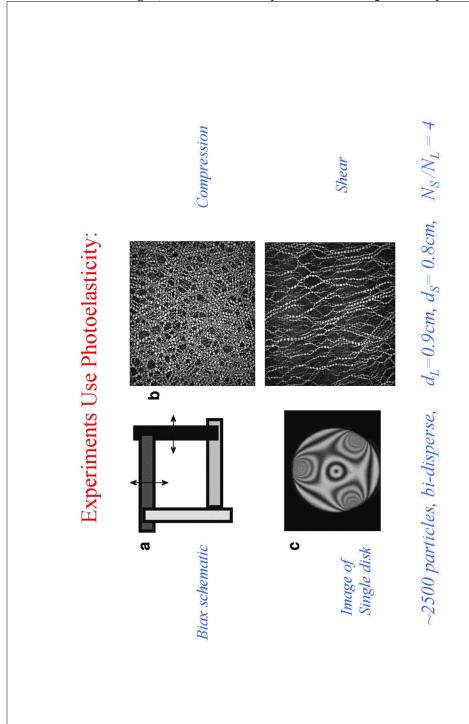
$$\frac{\partial \boldsymbol{\sigma}_{xz}}{\partial z} + \frac{\partial \boldsymbol{\sigma}_{xz}}{\partial z} = 0 \quad \frac{\partial \boldsymbol{\sigma}_{xz}}{\partial x} + \frac{\partial \boldsymbol{\sigma}_{zz}}{\partial z} = 0 \quad \boldsymbol{\sigma}_{xz} = \boldsymbol{\sigma}_{zx}$$

### Some approaches to describing stresses

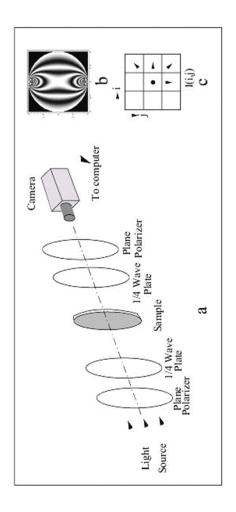
- Elasto-plastic models (Elliptic, then hyperbolic)
- Lattice models
- Q-model (parabolic in continuum limit)
- 3-leg model (hyperbolic (elliptic) in cont. limit)
- Anisotropic elastic spring model
- OSL model (hyperbolic)
- Telegraph model (hyperbolic)
- Double-Y model (type not known in general)

(Trush Majmudar and RPB, Nature, June 23, 2005) Experiments to determine vector contact forces





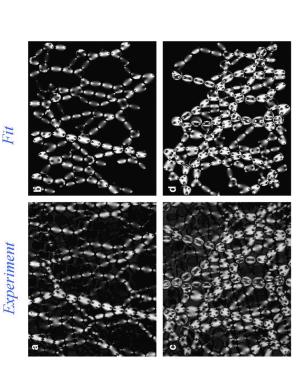
Measuring forces by photoelasticity



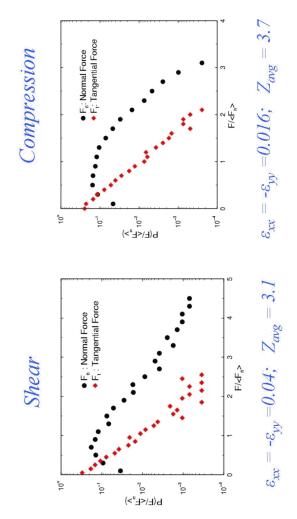
### Basic principles of technique

- Process images to obtain particle centers and contacts
- Invoke exact solution of stresses within a disk subject to localized forces at circumference
- Make a nonlinear fit to photoelastic pattern using contact forces as fit parameters
- $I = I_0 \sin^2[(\sigma_2 \sigma_1)CT/\lambda]$
- In the previous step, invoke force and torque balance
- Newton's 3d law provides error checking

# Examples of Experimental and 'Fitted' Images

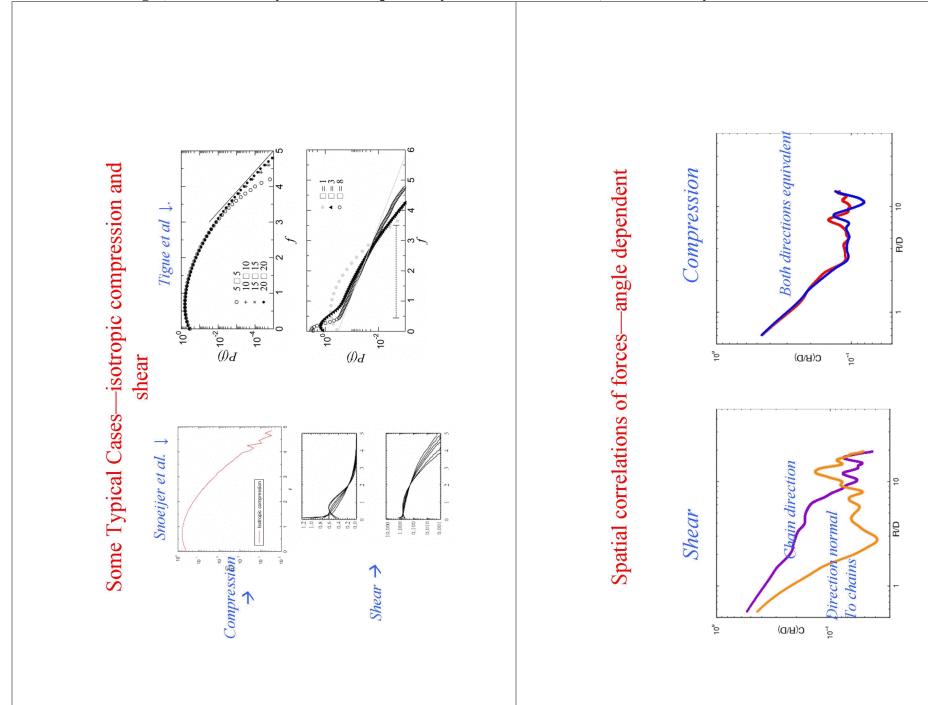


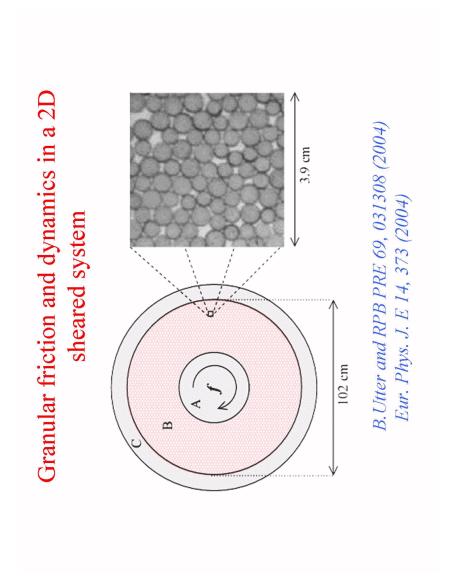
#### Force distributions for shear and compression

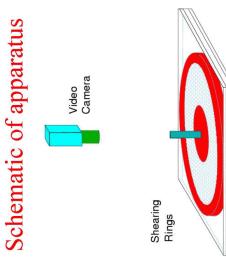


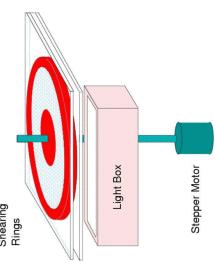
# Edwards Entropy-Inspired Models for P(f)

- Consider all possible states consistent with applied forces
- Compute Fraction where at least one contact force has value f→ P(f)
- E.g. Snoeier et al. PRL 92, 054302 (2004)
- Tighe et al. preprint (Duke University)

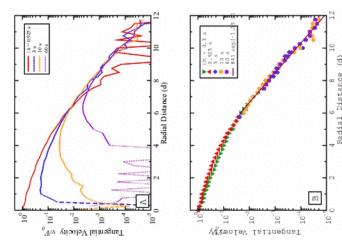


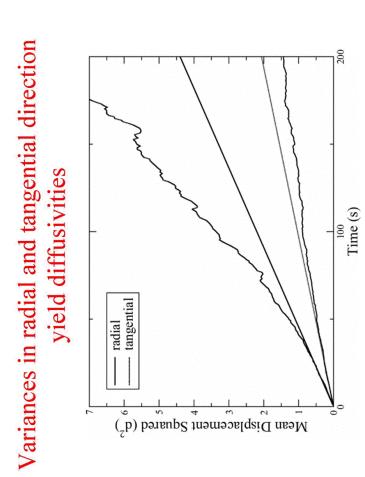


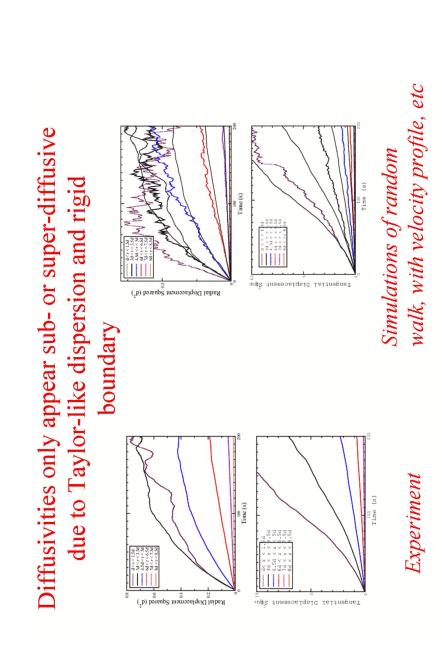




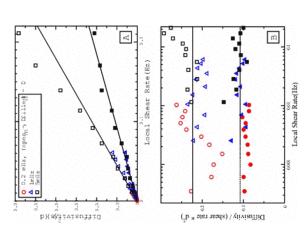


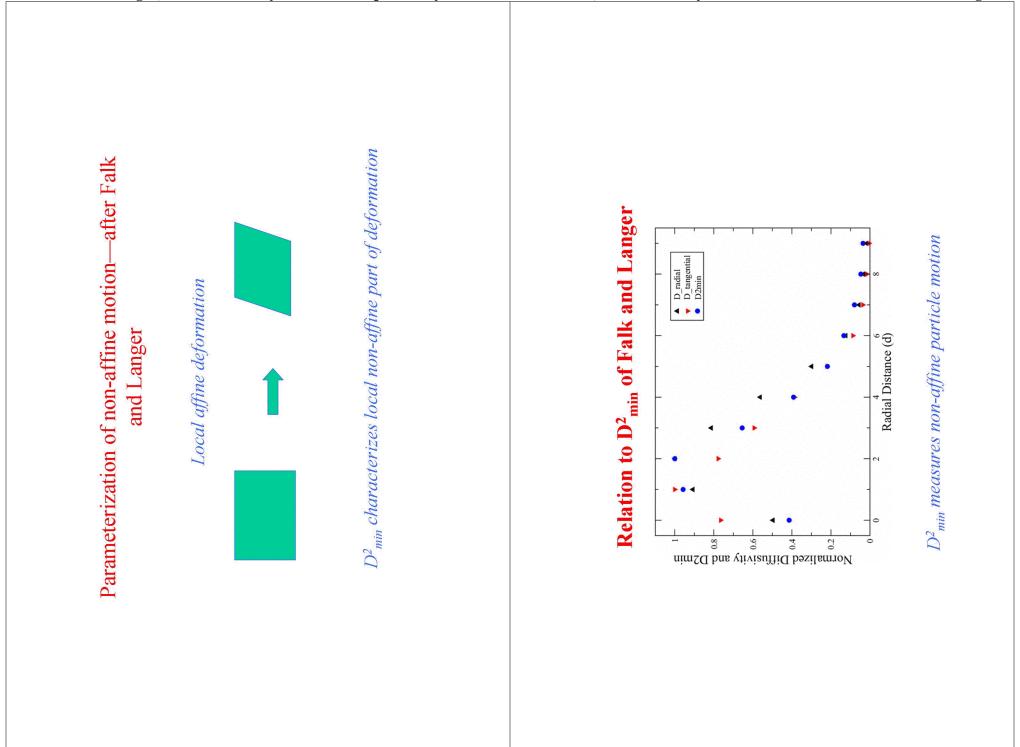






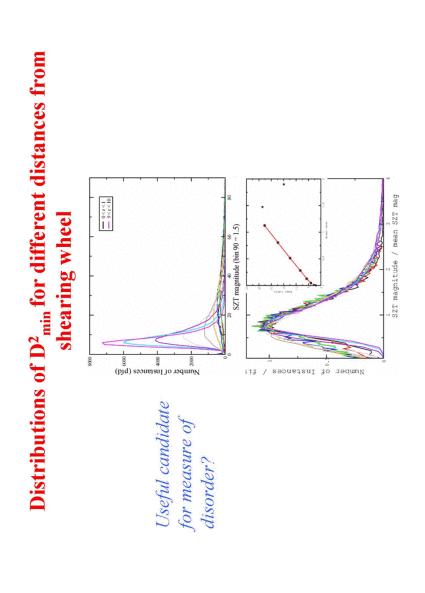
# Local shear rate determines diffusivities

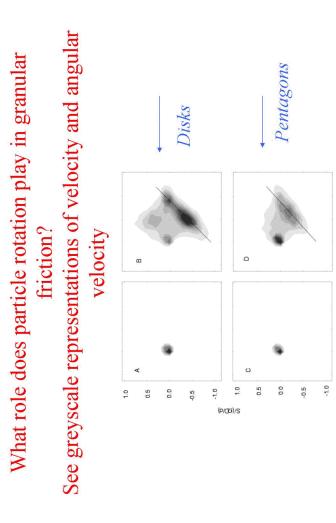




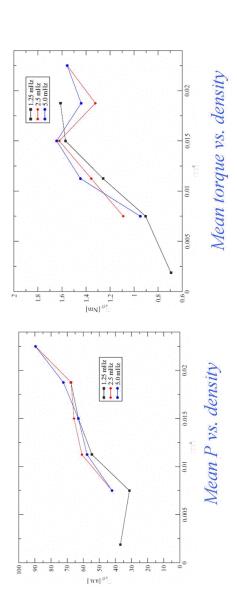
High density

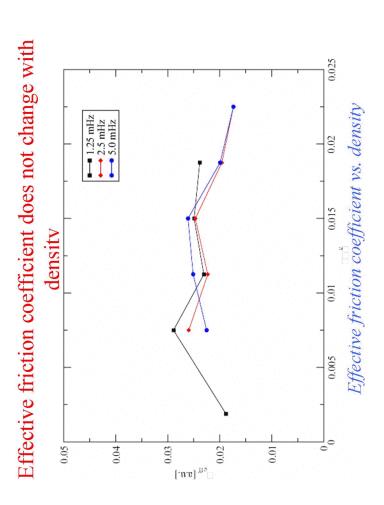
Low density



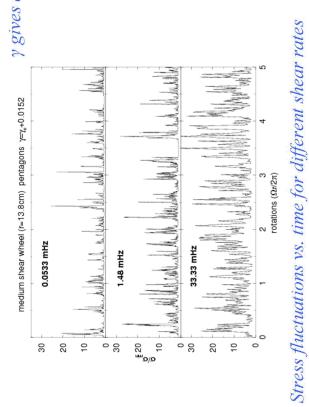


Measure pressure and shear stress, compare ratio, for different densities

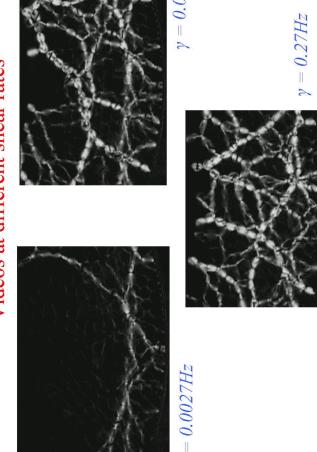




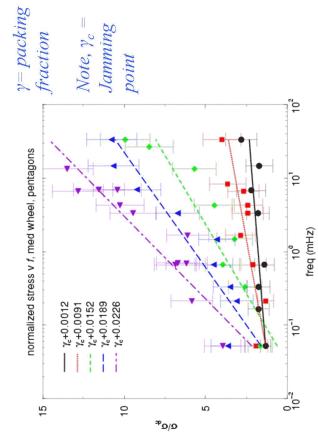
### Rate Dependence in Granular Shear



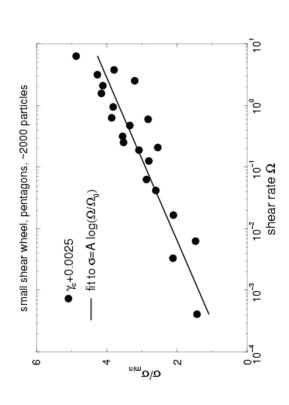
Videos at different shear rates



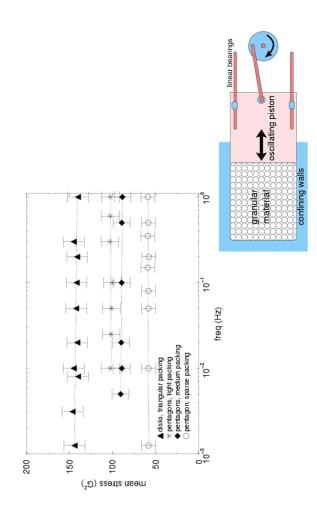
Time-averaged pressure vs. shear rate, and density



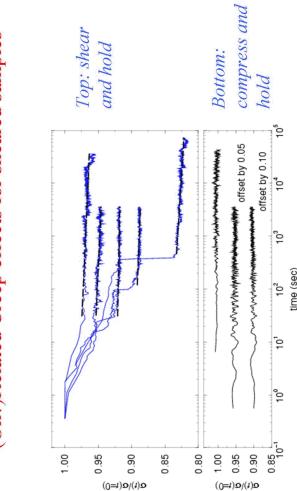
Time-averaged pressure vs. shear rate: 5 decades



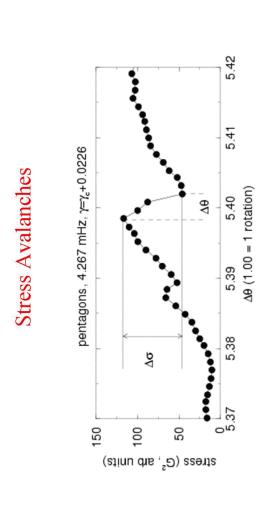
No rate dependence for periodic compression

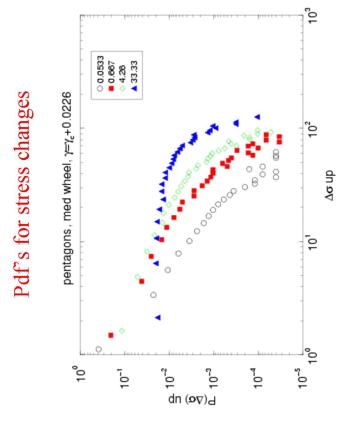


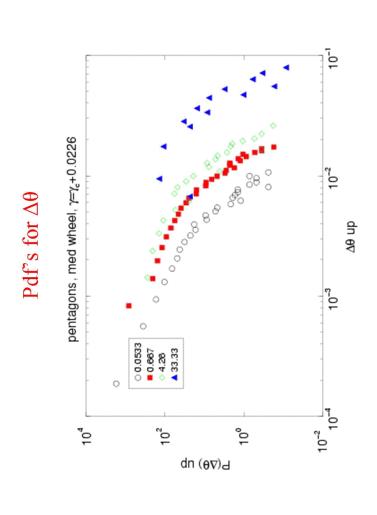
(Un?)Related Creep effects for sheared samples



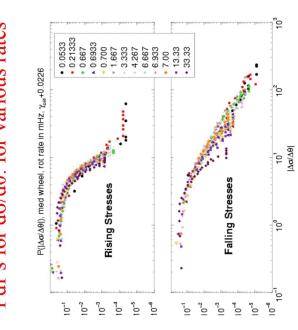




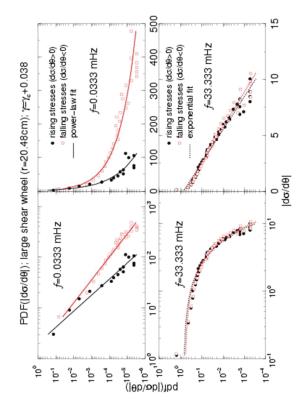




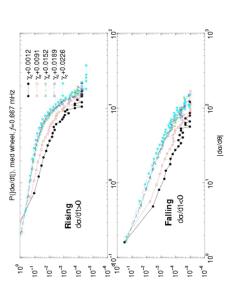
Pdf's for do/d0: for various rates

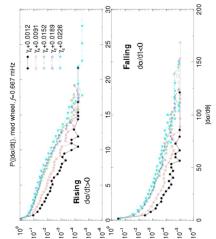


Pdf's for  $d\sigma/d\theta$ : for various rates

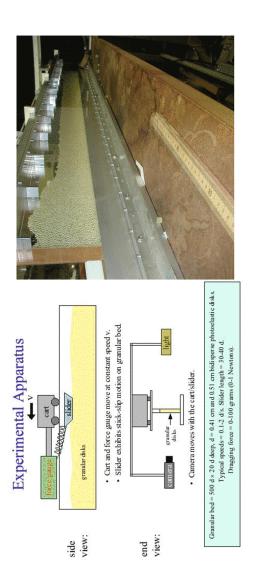


Pdf's for do/d0: for various densities

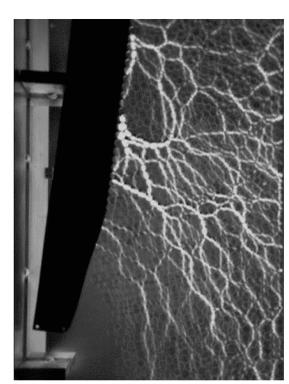


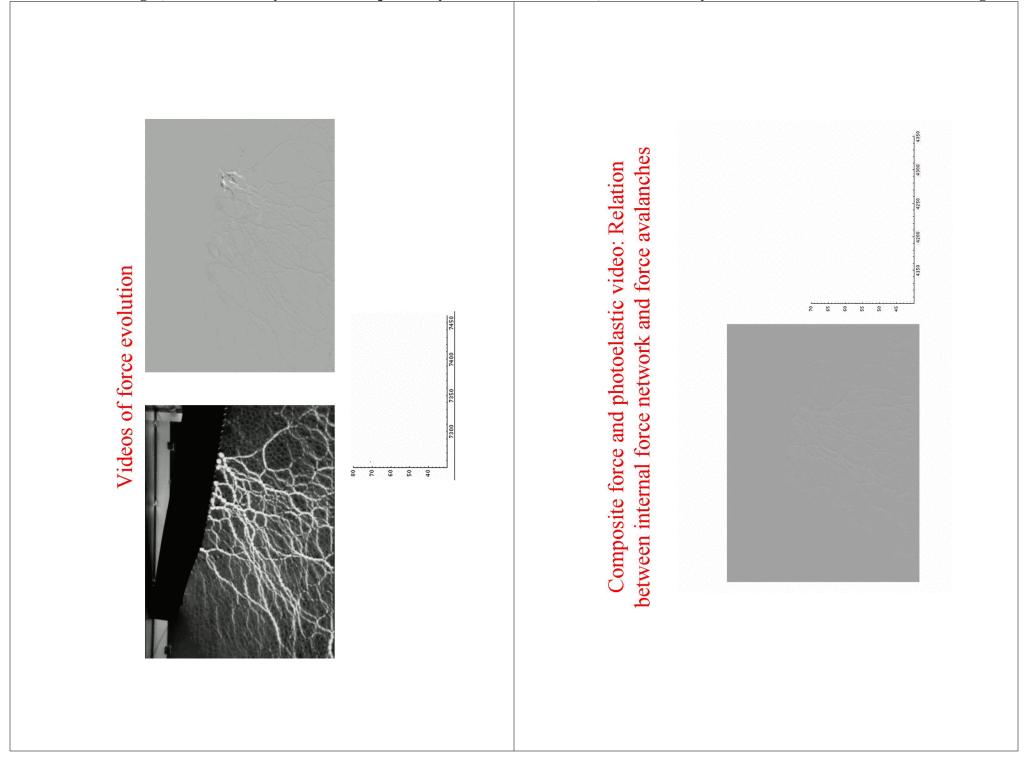


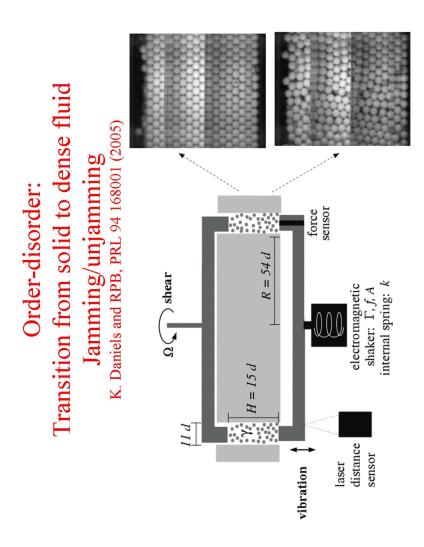
## Granular Rheology—a slider experiment



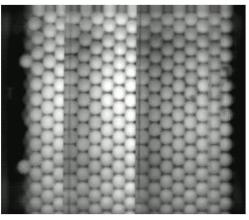
What is the relation between stick slip and granular force structure?

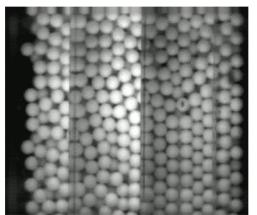


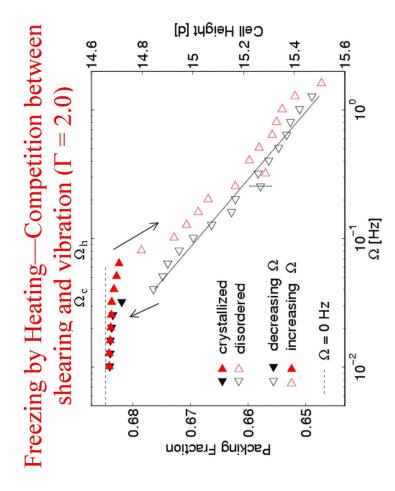




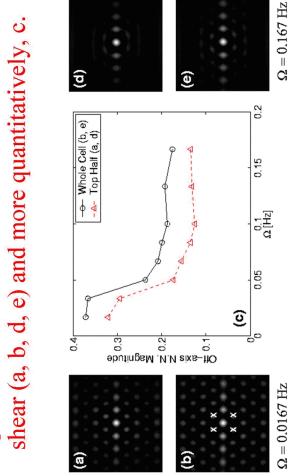
Videos of ordered/disordered states



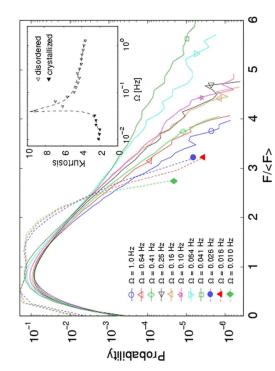




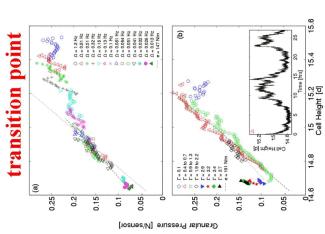
Spatial Autocorrelations show disorder with shear (a, b, d, e) and more quantitatively, c.



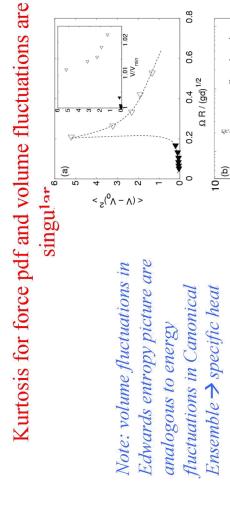
Force Probability Distributions: Singular behavior in the Kurtosis



Large-scale Fluctuations, particularly near



 $10^0$   $\Omega$  R / (gd)  $^{1/2}$ 

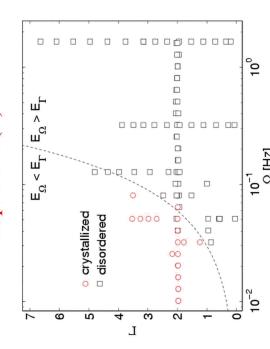


0.8

8

Kurtosis



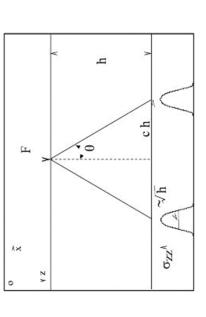


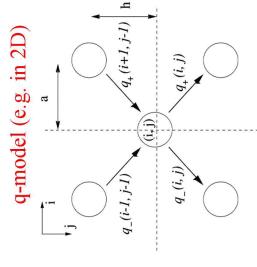
### Some approaches to describing stresses

- Elasto-plastic models (Elliptic, then hyperbolic)
- Lattice models
- Q-model (parabolic in continuum limit)
- 3-leg model (hyperbolic (elliptic) in cont. limit)
- Anisotropic elastic spring model
- OSL model (hyperbolic)
- Telegraph model (hyperbolic)
- Double-Y model (type not known in general)

## OSL model—hyperbolic—wave equation

$$oldsymbol{\sigma}_{xx} = \eta oldsymbol{\sigma}_{zz} + \mu oldsymbol{\sigma}_{xz} \quad \eta, \ \mu$$
: phemonological parameters  $oldsymbol{\sigma}_{zz}(x,z) = rac{F}{2} [\delta(x+cz) + \delta(x-cz)]$ 





q's chosen from uniform distribution on [0,1]

Predicts force distributions  $\sim exp(-F/F_o)$ 

Long wavelength description is a diffusion equation

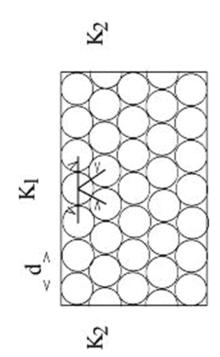
$$\frac{\partial w(z,j)}{\partial z} = \beta [w(z,j+1) + w(z,j-1) - 2w(z,j)]$$

$$\frac{\partial w}{\partial z} = D \frac{\partial^2 w}{\partial x^2}$$

Expected stress variation with depth

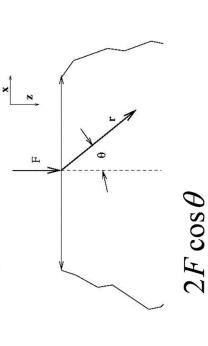
$$\sigma_{zz}(x,z) = \frac{F}{2\sqrt{\pi Dz}} \exp(-x^2 / 4Dz)$$

#### Anisotropic elastic lattice model



Linear widening with depth—e.g. Goldenberg and Goldhirsch, Nature 435, 188 (2005) Expect progagation along lattice directions

Elastic response, point force on a semi-infinite sheet

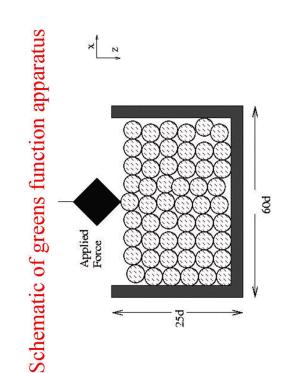


$$\sigma_{rr} = \frac{2F\cos\theta}{r\pi} \qquad \sigma_{r\theta} = \sigma_{\theta\theta} = 0$$

In Cartesian coordinates:

$$\sigma_{ii} = 1/[z(1+(x/z)^2]^p$$
  $p=1,2$ 

Force response/transmission: what is the mechanical response to a small point force? Physica D 182, 274 (2003)

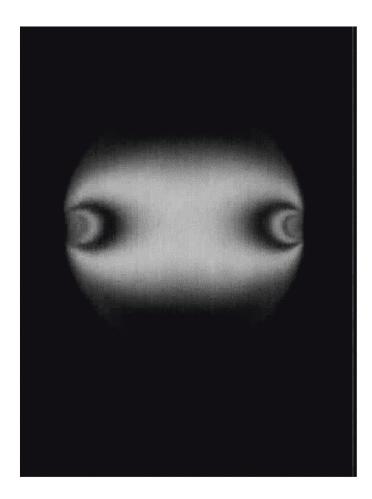


l = grain size

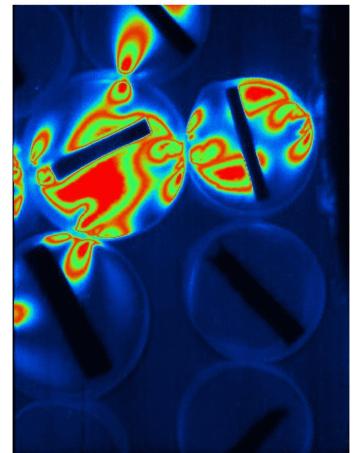
Use: 1) Monodisperse disks (spatially ordered)

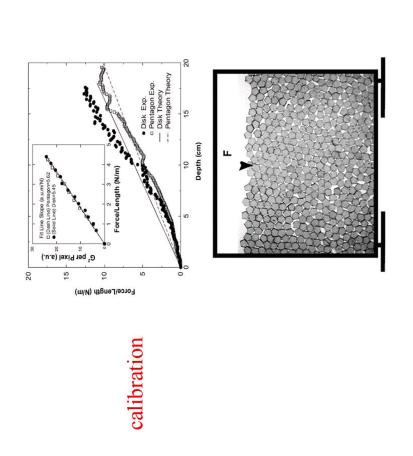
- 2) Bidisperse disks (weakly disordered)
- 3) Pentagons (strongly disordered)

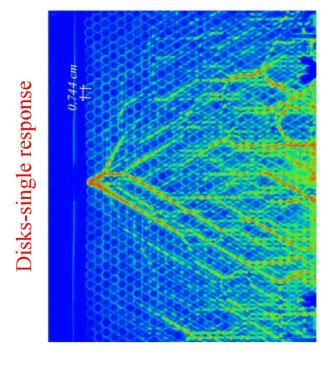
Diametrically opposed forces on a disk

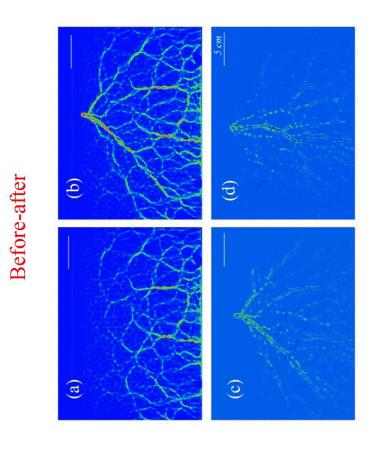


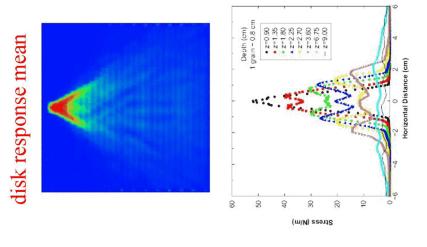
gradient technique to obtain grain-scale forces

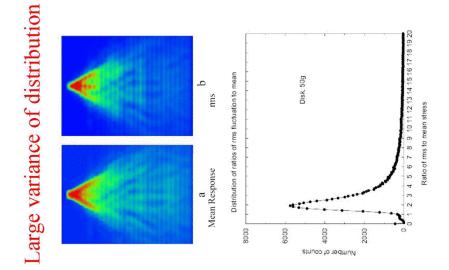


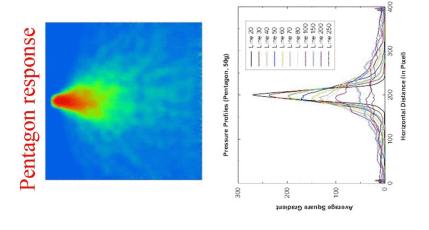




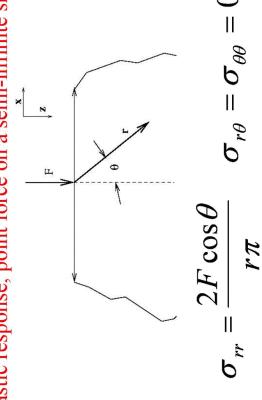






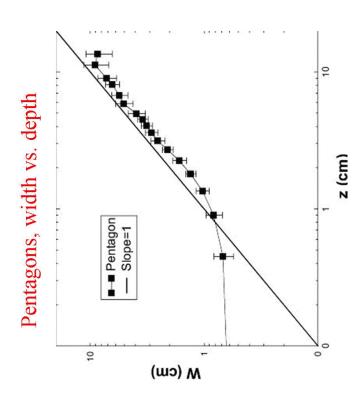


Elastic response, point force on a semi-infinite sheet

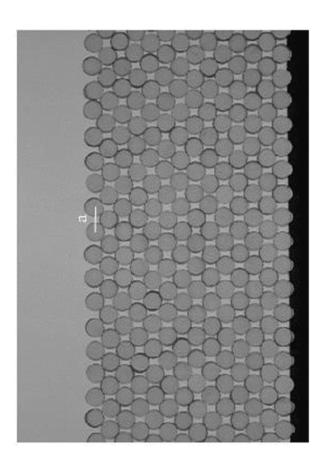


In Cartesian coordinates:

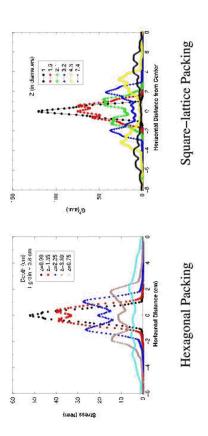
$$\sigma_{ii} = 1/[z(1+(x/z)^2]^p$$

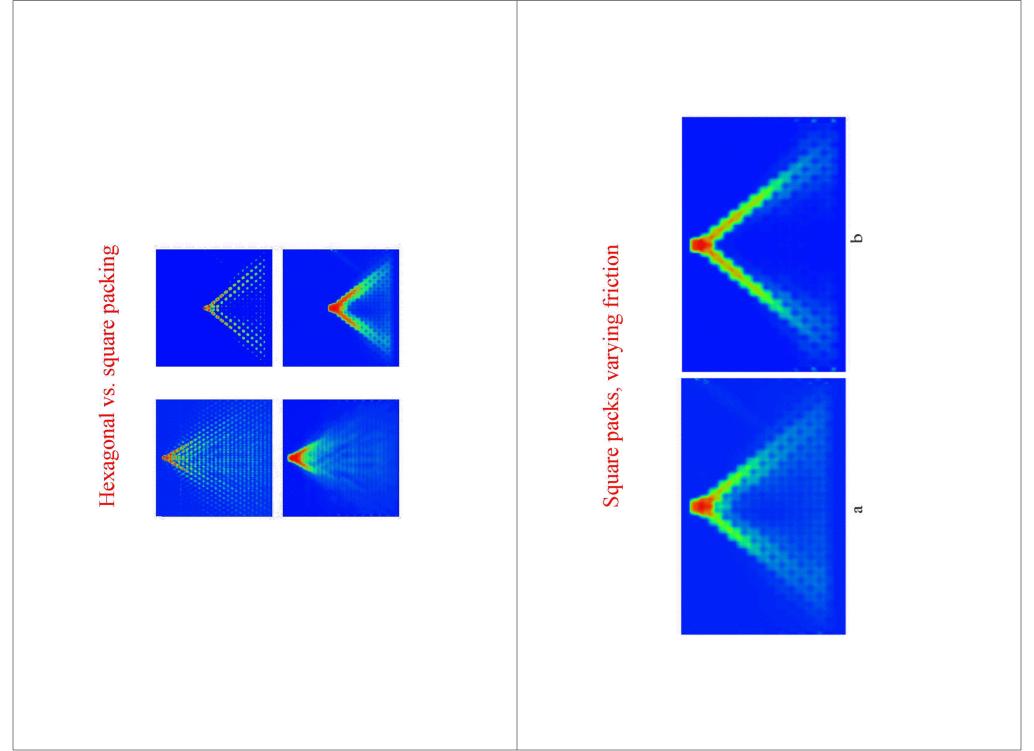


Rectangular packing reduces contact disorder

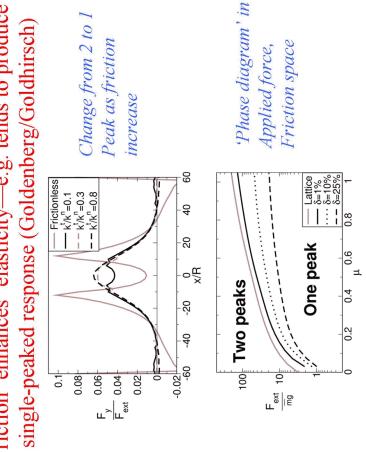


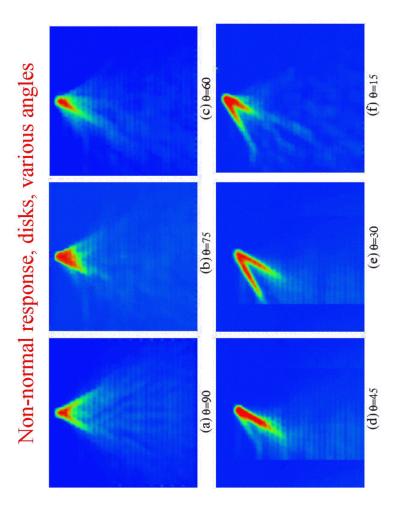
Hexagonal vs. square, data

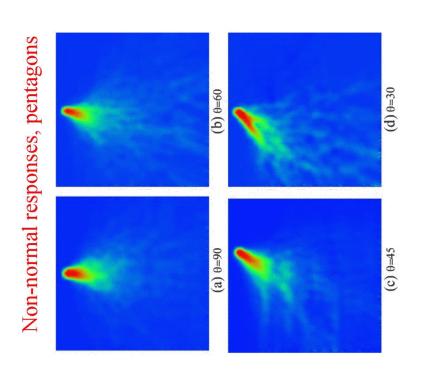


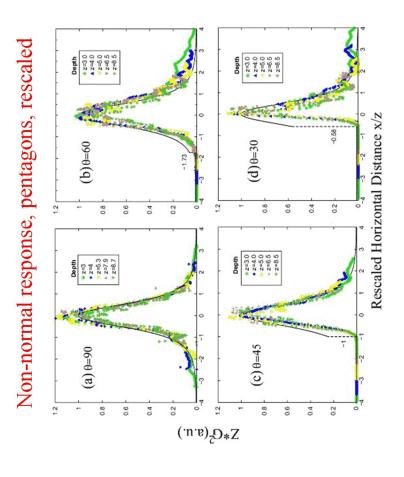












#### Conclusions

- Normal force distributions are sensitive to stress state
- Long-range correlations for forces in sheared systemsthus, force chains can be mesoscopic at least
- Diffusion in sheared systems: insights into microscopic statistics of driven granular materials
- Logarithmic rate dependence is seen in sheared granular systems
- Interesting connections to avalanches/earthquakes...
- Order-disorder transition—first order
- characterizes jamming-unjamming, contradictions notions of vibration > temperature in granular systems
- Strong effects on transmission from order/disorder (spatial -overall response is mostly elastic and force-contact)

### What are important questions? (Dense materials)

- What are statistical properties/variability of granular systems?
- What is the nature of spatio-temporal correlations/fluctuations?

The answer to this requires addressing the something that is just now being considered relevant multi-scale phenomena involved

• Is there a universal description for stress, deformation, etc?

## Jamming and fragility (Liu and Nagle, Bouchaud et al.)

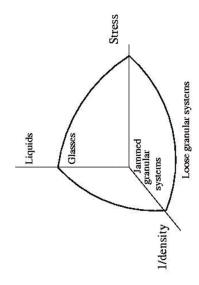
Class of systems that are constrained or jammed

Granular Materials

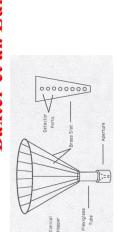
Colloids

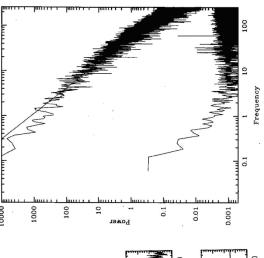
Glasses

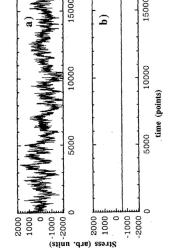
Temperature

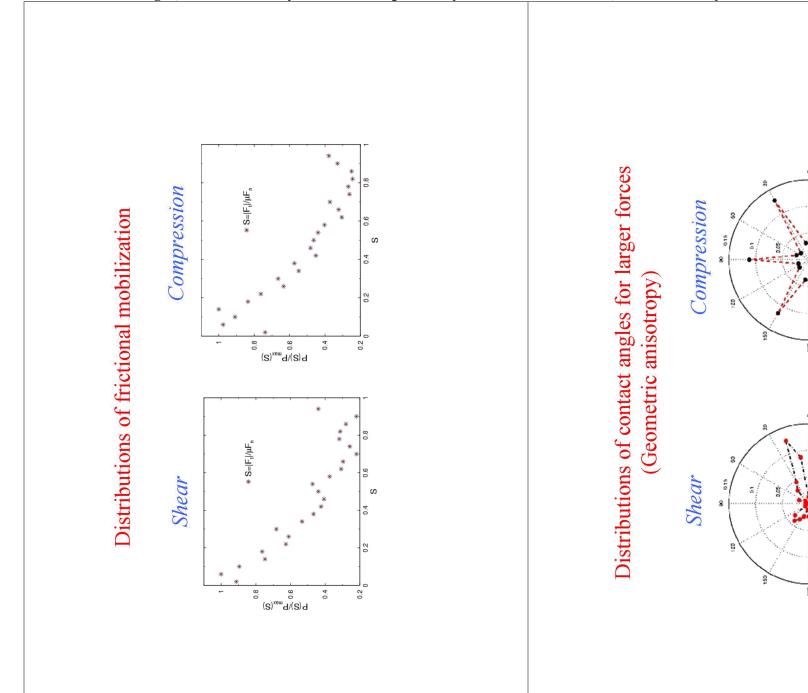


#### Fluctuations in a Simple Granular Flow Baxter et al. Eur. J. Mech.B 1991

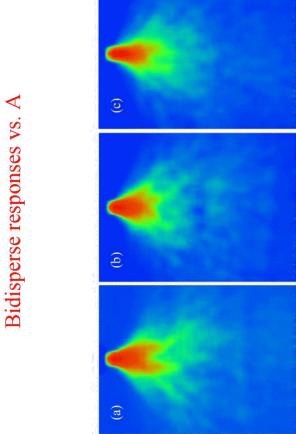


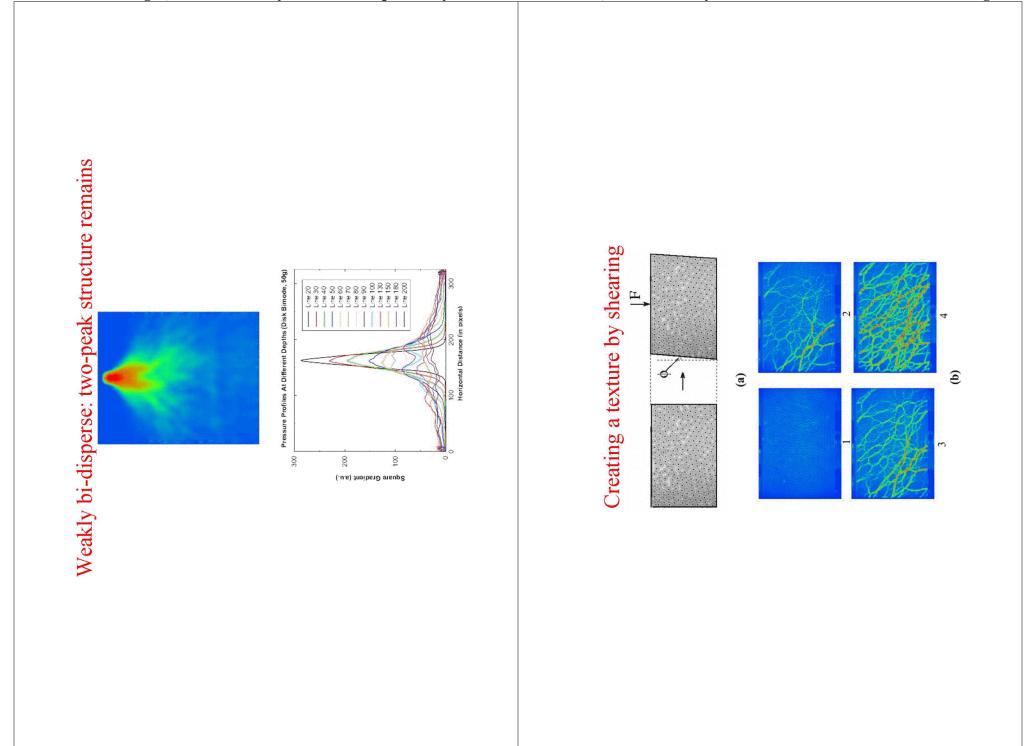


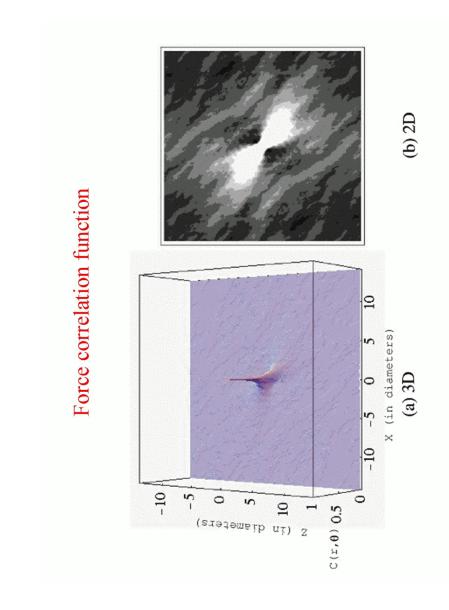




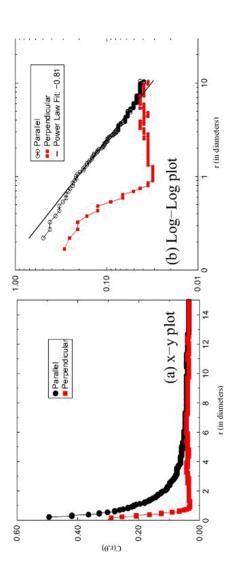








Correlation functions along specific directions



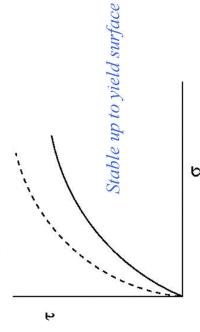
#### Features of elasto-plastic models

Conserve mass: 
$$\partial \rho / \partial t + \partial_i ($$

(Energy: lost by friction)

Conserve momentum: pdv, l

Concept of yield and rate-independence



 $\tau => shear stress, \ \sigma => normal stress$ 

# Example of stress-strain relationship for deformation

$$T_{ij} = P \delta_{ij} k P V_{ij} / |V|$$
$$V_{ij} = -(\partial_j v_i + \partial_i v_j) / 2$$

(Strain rate tensor with minus)

$$|V|^2 = \Sigma V_{ij}^2$$
  $|V| = norm \ of V$ 

Contrast to a Newtonian fluid:

$$T_{ij} = P\delta_{ij} + 2\eta[V_{ij} - Tr(V)/3] + (2\zeta/3)Tr(V)$$

### Convection-diffusion/3-leg model

Applies for weak disorder

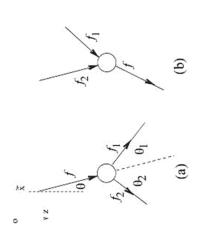
$$O^+O^-\sigma=0$$
 
$$O^\pm=\left[\partial/\partial z\pm c\partial/\partial x-D\partial^2/\partial x^2\right]$$

Expected response to a point force:

$$\sigma_{zz} = \frac{F}{2} \frac{1}{\sqrt{4\pi Dz}} \{ \exp[-(x+cz)^2/4Dz] + \exp[-(x-cz)^2/4Dz] \}$$

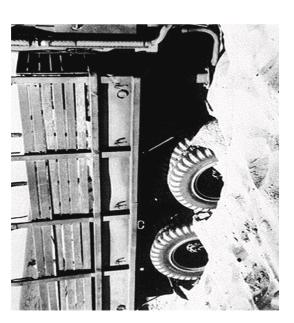
#### Double-Y model

# Assumes Boltzmann equation for force chains



For shallow depths: One or two peaks Intermediate depths; single peak-elastic-l Largest depths: 2 peaks, propagative, wit diffusive widening

### A bit further from home



### Granular Material Phases-Gases

#### Granular Gases:

Cool spontaneously, show clustering instability

$$Tg = (1/2)m < v^2 >$$

