Correlation in Granular Flow

Gregg Lois Jean Carlson, Anael Lemaitre

Why Granular Flows?

Big Prevalent Simple (Relatively) Far from Equilibrium

Jerry Gollub, Haverford

Melany Hunt, Caltech

Why Correlation?

Because we know it should be there!

Bob Behringer, Duke

<u>Outline</u>

- Background
 - Numerical Algorithm for Shear Flows
 - Kinetic Theory
- Correlation Length
- Contact Force Distribution Function
- Constitutive Relations from Network Picture
- STZ Theory

Contact Dynamics

No time-scale introduced by the interaction, grains are perfectly rigid We investigate homogeneous shear flows

Independent variables: $e, e_t, \mu,
u, \dot{\gamma}$

Simulations of Granular Flow

Event Driven Simulations:

Soft-Sphere Simulations:

Same rules as CD, but assumes binary collisions

Can be applied to high restitution and low density

(Goldhirsch & Zanetti 1993)

(Campbell 2002, da Cruz 2005)

<u>Kinetic Theory</u>

Well developed for (frictionless) hard-spheres with constant restitution.

Collision Rule + Binary Collisions + Molecular Chaos

 $v_n^f = -ev_n^i$

Test of Molecular Chaos:

Do we see pre-collisional velocity correlations? Do the predictions of KT match the measured stress?

Test of Binary Collisions

Binary Collision Assumption

There must be a microscopic indicator from some correlation measurement!

Spatial Force Correlations

$$C(\ell) = \sum_{\text{pairs}} \left(\vec{F}(r_i) \cdot \vec{F}(r_j) \right) \delta(\ell - |r_i - r_j|)$$

 $C(\ell) \sim e^{-\ell/\xi}$

 $\xi = \frac{\int d\ell \, \ell C(\ell)}{\int d\ell \, C(\ell)}$

The correlation length

Including Friction

Considering Anisotropy

$$\xi(\theta) = \frac{\xi}{2\pi} \left(1 - a_0 \sin \left[2(\theta - \theta_0) \right] \right)$$
$$a_0 = 0.21 \qquad \theta_0 = 0.75^{\circ}$$

So Now What?

Contact Force Distributions

Formation of peak indicates that the system is jammed.

(O'Hern 2001, 2003)

Peak disappears as system approaches jamming.

(Ferguson 2004, Landry 2005)

What we find, for constant packing fraction

What we find, for constant restitution

<u>P(F) determined by Kinetic Theory for small</u> ξ

 $F_{ij}^{\rm bc} = \frac{1+e}{dt} \mu_{ij} (v_i - v_j) \cdot \hat{\sigma}_{ij}$

In the Dense Regime

$$F_{IJ} = F_{IJ}^{bc} + \sum_{p=1}^{n} \mathcal{F}_{IJ}(p)$$
$$F_{IJ}^{bc} = \frac{1+e}{dt} \mu_{IJ}(v_I - v_J) \cdot \hat{\sigma}_{IJ}$$

$$\mathcal{F}_{IJ}(1) = \sum_{m=1; m \neq J}^{z_I} \left(\hat{\sigma}_{mI} \cdot \hat{\sigma}_{IJ} \right) F_{mI}^{\mathrm{bc}} + \sum_{n=1; n \neq I}^{z_J} \left(\hat{\sigma}_{nJ} \cdot \hat{\sigma}_{IJ} \right) F_{nJ}^{\mathrm{bc}}$$

 $\mathcal{F}_{IJ}(2) = \sum_{m=1; m \neq J}^{z_I} \left(\hat{\sigma}_{mI} \cdot \hat{\sigma}_{IJ} \right) \sum_{m_2=1; m_2 \neq m}^{z_m} \left(\hat{\sigma}_{mm_2} \cdot \hat{\sigma}_{mI} \right) F_{mm_2}^{\mathrm{bc}} + \{ I \leftrightarrow J \}$

Pressure in the Dense Regime

$$p = \frac{1}{2} \operatorname{Tr} \Sigma \propto \sum_{ij} \sigma_{ij} F_{ij} \approx \langle \sigma \rangle \langle F \rangle \quad \longrightarrow \quad \frac{p^{\mathrm{s}}}{p^{\mathrm{bc}}} = \frac{\langle F \rangle}{\langle F^{\mathrm{bc}} \rangle}$$
$$\langle F \rangle = \langle F^{\mathrm{bc}} \rangle + \sum_{p=1}^{\xi/\xi_{\mathrm{el}}-1} \langle \mathcal{F}(p) \rangle$$

$$\langle \mathcal{F}(p) \rangle = 2 \langle F^{\mathrm{bc}} \rangle [\alpha(z-1)]^p$$

Pressure in the Dense Regime

$$\frac{p^{\rm s} - p^{\rm bc}}{p^{\rm bc}} = 2\frac{G - G^{\xi/\xi_{\rm el}}}{1 - G} \qquad \qquad G = \alpha(z - 1)$$

Testing with simulation data

Shear Stress in the Dense Regime

$$s = \frac{1}{2} \left(\Sigma^{xy} + \Sigma^{yx} \right) \propto \sum_{ij} \hat{\sigma}_{ij}^x \hat{\sigma}_{ij}^y F^{ij}$$

Depends on the orientation of contacts-- the geometry of networks. STZ theory explicitly considers the orientation of contacting zones to determine constitutive relations.

STZ theory has been tested previously (Lois, Lemaitre & Carlson 2005), for frictional and frictionless granular flows with e=0.

STZ Theory of Amorphous Solids

(1) Non-affine (plastic) motion occurs in localized regions(2) The regions undergoing non-affine motion have orientation

 $\dot{\gamma}^{pl} \propto R_- n_- - R_+ n_+$ (Falk & Langer 1997) $\dot{n}_{\pm} = R_{\mp} n_{\mp} - R_{\pm} n_{\pm} + w(1 - \zeta n_{\pm})$ $w \propto s \dot{\gamma}/p$ $R_{\pm} \propto \sqrt{T} e^{\pm \kappa \sigma/p}$ (Lemaitre 2002)

What we find, for constant restitution

Conclusions

- Can Measure Correlation to quantify force networks
- Play a key role in constitutive modeling
 - Kinetic Theory
 - Pressure Model
 - STZ Model
- The appearance of correlations can be measured with the contact force distribution function

