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Why Granular Flows?
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Prevalent
Simple (Relatively)

Far from Equilibrium
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Why Correlation?

Because we know it should be there!

Bob Behringer, Duke
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Contact Dynamics
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Ft ≤ µFn

No time-scale introduced by the interaction, grains are perfectly rigid

e, et, µ, ν, γ̇Independent variables:

We investigate homogeneous shear flows



Simulations of Granular Flow

Event Driven Simulations:  
   Same rules as CD, but assumes binary collisions

(Goldhirsch & Zanetti 1993)

Can be applied to high restitution and low density

Soft-Sphere Simulations:
   Characterized by stiffness κ =

kn

mγ̇2

(Campbell 2002, da Cruz 2005)

νc

Quasi-static flows, JammingInertial, or hard-sphere flows

ED

CD



Kinetic Theory
Well developed for (frictionless) hard-spheres with constant restitution.

vf
n = −evi

n

Collision Rule    +     Binary Collisions    +    Molecular Chaos

Test of Binary Collisions:

Σαβ
s ∼

∑

contacts

RαFβ

Σαβ
bc ∼ 1 + en

∆t

∑

contacts

Rαvn
β

Test of Molecular Chaos:

Do we see pre-collisional 
velocity correlations?

Do the predictions of KT 
match the measured stress?



Test of Binary Collisions
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Binary Collision Assumption
There must be a microscopic indicator from some correlation measurement!

(Goldhirsch & Zanetti 1993) (Majmudar & Behringer 2005)
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Spatial Force Correlations

C(!) =
∑

pairs
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e = 0.25; ν = 0.81
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The correlation length
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Including Friction
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Considering Anisotropy
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So Now What?

ξ



Contact Force Distributions

2. Discussion of finite-size scaling exponents

We have found that there are very strong system-size ef-

fects. As N diverges, the width of the distribution of jamming

thresholds vanishes as N!!, leaving a "-function distribu-
tion at point J. We find that ! is very close to 1/2 #see Eq.
$16%&. It is not obvious that this result can be explained by a
simple central limit theorem argument because the packing

density is a subtle property of the packing geometry. Inde-

pendent of the explanation for this exponent, there are still

correlations extending across the entire system once it is

jammed.

The peak position shifts toward the random-close-packing

density as L!1/'. This result suggests that there is a long

length scale appearing in the problem near the onset of jam-

ming, which scales as ((!(c)
!'. Note that our result '

"0.71#0.08 is a typical value for a correlation length expo-
nent.

I. Lack of self-averaging at point J

At point J, there is no self-averaging in the sense that the

average properties of a very large system are not the same as

the average over an ensemble of many smaller systems at the

same packing fraction. This property can be understood by

considering a system of size N and the behavior as N di-

verges. For a finite-sized system, Fig. 6 shows that there is a

distribution of jamming thresholds (c . Consider a given

packing fraction ( which is within this distribution. Some of

the configurations at this ( will be jammed, and others will

be unjammed with p"0. For an unjammed configuration p
"0 for every subregion of the configuration, as well. $This is
exact even in the infinite system-size limit.% However, at the
same ( , there will exist jammed configurations for which
p$0. For those configurations, we have found p$0 for al-
most all subregions. There are only small clusters of rattlers

that have zero local pressures. The number of such clusters

decreases rapidly with the size of the cluster #see Fig. 10$c%&.
Thus, the value of the pressure averaged over all configura-

tions cannot be the same as the value of the pressure aver-

aged over an arbitrary given configuration. As a result, there

is no self-averaging. As the system size N increases, the dis-

tribution of jamming thresholds narrows. As a result, the lack

of self-averaging will be observed over a smaller region of (
that eventually narrows to a point $point J) in the infinite N
limit.

The lack of self-averaging is evident in the distribution of

interparticle normal forces between particles, P(F) #27&. For
a given configuration, the average interparticle force )F* is
directly proportional to the pressure of that configuration as

shown in Fig. 15 for a 3D monodisperse system with har-

monic repulsions. Depending on whether one normalizes the

forces in a given configuration to )F*, the average within
that configuration, and then averages P(F/)F*) over many
configurations, or whether one normalizes the forces of all

configurations to the same global average force ))F**, and
then calculates P(F/))F**), one will get a different distribu-
tion function. This is shown in Fig. 16 for a 3D monodis-

perse system with harmonic repulsions. Note that the differ-

ence between P(F/)F*) and P(F/))F**) is largest near (

"0.636, which is near the peak (0 of the distribution of

jamming thresholds for the three-dimensional system shown

(N"1024). As the packing fraction is increased above (0,

the curves for P(F/)F*) and P(F/))F**) look more and more
similar. This is consistent with the argument above that the

lack of self-averaging is most pronounced near the peak of

the distribution of jamming thresholds. A simple argument

for the shape of the tail of P(F/))F**) was given earlier #27&.

FIG. 15. Pressure p vs average interparticle force )F* for a 3D
monodisperse system (N"512) with harmonic repulsions. The

solid line has slope equal to 1.

FIG. 16. Distribution of interparticle normal forces for a 3D

monodisperse (N"1024) system with harmonic repulsions. $a%
P(F/)F*) vs F/)F* and $b% P(F/))F**) vs F/))F**.

JAMMING AT ZERO TEMPERATURE AND ZERO . . . PHYSICAL REVIEW E 68, 011306 $2003%

011306-13

(O’Hern 2001, 2003)

Formation of peak indicates 
that the system is jammed.
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Fig. 1 – a) Simulation results for impulse distribution scaled to the average impulse, 〈I〉, with flow
velocity decreasing from the bottom curve to the top curve. The inset shows the ratio of P (Ipeak)
to P (Imin) as a function of the flow velocity. b) Comparison of simulation results with experimental
data obtained from [16]. Note that the data obtained from the simulation have been displaced with
respect to the experimental data for clarity. Without this displacement the lines would lie on top of
each other.

not observe the peak and its disappearance. Keeping in mind that the experiment had a finite
impulse threshold due to the resolution of the transducer and measured impulse distributions
at the wall, we carried out measurements which mimicked these conditions and found that
the resulting impulse distributions were in semi-quantitative agreement with the experiments
(fig. 1b). These findings indicate that the details of the measurement can influence the exact
form of P (I) but the overall effect of increasing small-impulse events with decreasing flow
rates is more robust [17]. In addition, these results provide some evidence that the model is
capturing the essential features of the experiment.

If the hard disks behaved as completely uncorrelated particles, the impulse distribution
would be a convolution of the individual momentum (velocity) distributions. Since there is
an average flow velocity, this would give rise to a peak in the distribution and the large-
impulse behaviour would reflect the form of the velocity distribution at large velocities. These
observations imply that the exponential tail in P (I) arises from uncorrelated particles and is a
consequence of the shape of the velocity distribution [18]. In contrast, the changes in shape of
P (I) at small values of I are difficult to justify from the perspective of uncorrelated particles
and indicate increasing correlations among the disks as the flow velocity decreases.

Spatial structures. – To explore the nature of correlations and possible connections be-
tween the changes in P (I) and the appearance of spatial inhomogeneities, we considered a
question first asked in studies of inelastic collapse in freely cooling granular gases [20], “How
many collisions does a given grain undergo in a fixed number of events?” We can construct
images of our simulated system at regular intervals and colour individual disks according to
the number of collisions they have experienced in the most recent interval (fig. 2a, b). The
number of collisions divided by the total time of the interval yields a collision frequency; based
on review of the images we chose a threshold frequency of 1750 (in inverse simulation time
units) and defined all particles with frequencies above this threshold as frequently colliding.

As we decrease the flow velocity, the frequently colliding particles form increasingly larger
linear clusters (compare fig. 2a, where vf = 2.03 in our units or 35.6 cm/s and fig. 2b, where

Peak disappears as system 
approaches jamming.

(Ferguson 2004, Landry 2005) 



What we find, for constant packing fraction
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What we find, for constant restitution
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P(F) determined by Kinetic Theory for small ξ
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F bc
ij =

1 + e

dt
µij(vi − vj) · σ̂ij

lo
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P
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In the Dense Regime

A

B

C

D

E

F I

J

FIJ(1) =
zI∑

m=1;m!=J

(σ̂mI · σ̂IJ)F bc
mI +

zJ∑

n=1;n!=I

(σ̂nJ · σ̂IJ)F bc
nJ

FIJ = F bc
IJ +

n∑

p=1

FIJ(p)

F bc
IJ =

1 + e

dt
µIJ(vI − vJ) · σ̂IJ

FIJ(2) =
zI∑

m=1;m!=J

(σ̂mI · σ̂IJ)
zm∑

m2=1;m2 !=m

(σ̂mm2 · σ̂mI)F bc
mm2

+ {I ↔ J}



Pressure in the Dense Regime

p =
1
2
TrΣ ∝

∑

ij

σijFij ≈ 〈σ〉〈F 〉
ps

pbc
=

〈F 〉
〈F bc〉

〈F 〉 = 〈F bc〉 +
ξ/ξel−1∑

p=1

〈F(p)〉

〈F(p)〉 = 2〈F bc〉[α(z − 1)]p



Pressure in the Dense Regime

ps − pbc

pbc
= 2

G − Gξ/ξel

1 − G
G = α(z − 1)

As z → 1 or ξ → ξel then ps → pbc
The dilute limit

The jamming limit

pbc → 0 which requires that ξ → ∞ and z ≥ 1 + α−1

This sets α = D−1



Testing with simulation data
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Shear Stress in the Dense Regime

s =
1
2

(Σxy + Σyx) ∝
∑

ij

σ̂x
ij σ̂

y
ijF

ij

Depends on the orientation of contacts-- the geometry of networks.
STZ theory explicitly considers the orientation of contacting zones to 

determine constitutive relations.

STZ theory has been tested previously (Lois, Lemaitre & Carlson 
2005), for frictional and frictionless granular flows with e=0.



STZ Theory of Amorphous Solids

(1)  Non-affine (plastic) motion occurs in localized regions
(2)  The regions undergoing non-affine motion have orientation

− +

R±

γ̇pl ∝ R−n− − R+n+ (Falk & Langer 1997)

(Lemaitre 2002)R± ∝
√

Te±κσ/p

ṅ± = R∓n∓ − R±n± + w(1 − ζn±)

w ∝ sγ̇/p



Test of STZ Flowing Steady State
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What we find, for constant restitution
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Conclusions

• Can Measure Correlation to quantify force networks

• Play a key role in constitutive modeling

• Kinetic Theory

• Pressure Model

• STZ Model

• The appearance of correlations can be measured with the 
contact force distribution function

νc

Quasi-static flows, JammingInertial, or hard-sphere flows

νbc


