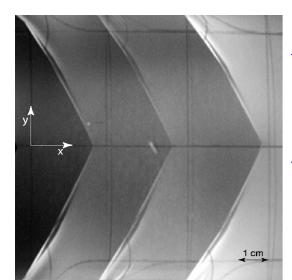
Rupture of Rubber

Experiment: Paul Petersan, Robert Deegan, Harry Swinney
 Theory: Michael Marder
 Center for Nonlinear Dynamics
 and Department of Physics
 The University of Texas at Austin



 PRL
 93
 015505

 (2004)
 014304

 PRL
 88
 014304

 (2002)
 014304

PRL **94** 048001 (2005)

 $\operatorname{cond-mat}/0504613$

Supported by the National Science Foundation

CNLD

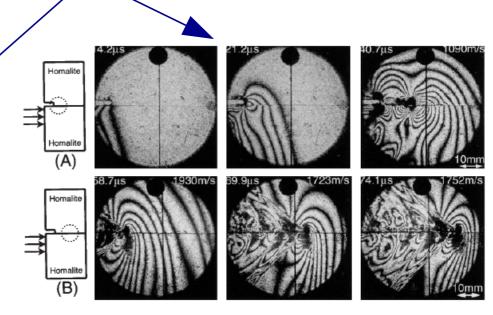
Outline

- Background: Limiting Speed of Cracks
 Experimental Observations
 - Oscillations
 - Sound and Rupture Speeds
- Numerical Investigations
 - Multi-Particle Modeling
 - Explorations
- Theory
 - Elementary Shock Theory
 - Continuum Theory
 - Discrete Theory and Scaling

Background

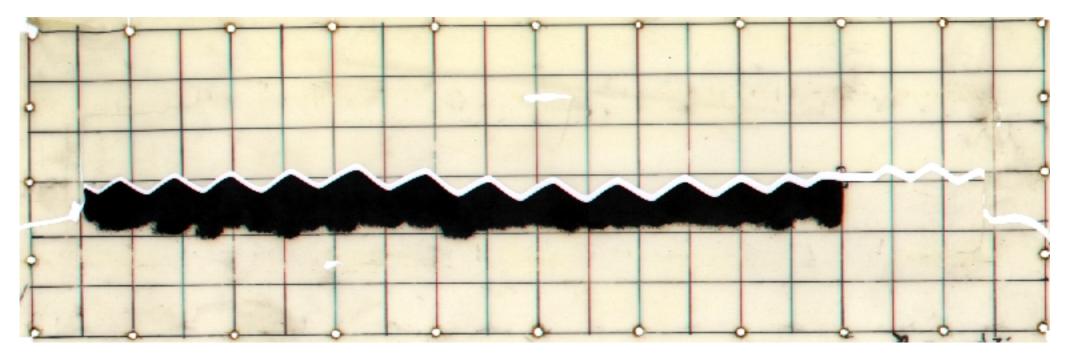
Limiting Speed of Cracks

- Rayleigh wave speed limits cracks in tension (Yoffe, 1951; Stroh, 1957; Freund, 1972)
- Shear waves can also travel at $\sqrt{2}c_s$ (Andrews, 1976; Burridge, Conn and Freund, 1979; Rosakis, Samudrala, Coker, 1999; Gao, Huang, Abraham, 2001)
- In a discrete medium, there is no limit to the speed of tensile cracks (Slepyan, 1982; MM, 1995; Buehler, Gao, and Abraham, 2003)
- Integrity of crack surface behind tip is key to whether supersonic solutions survive (Ravi-Chandar and Knauss, 1984; Fineberg et al, 1991; MM)

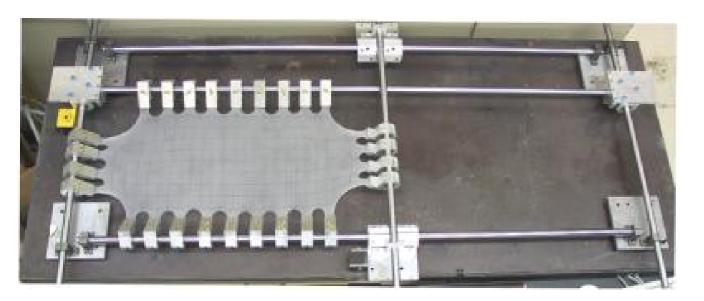


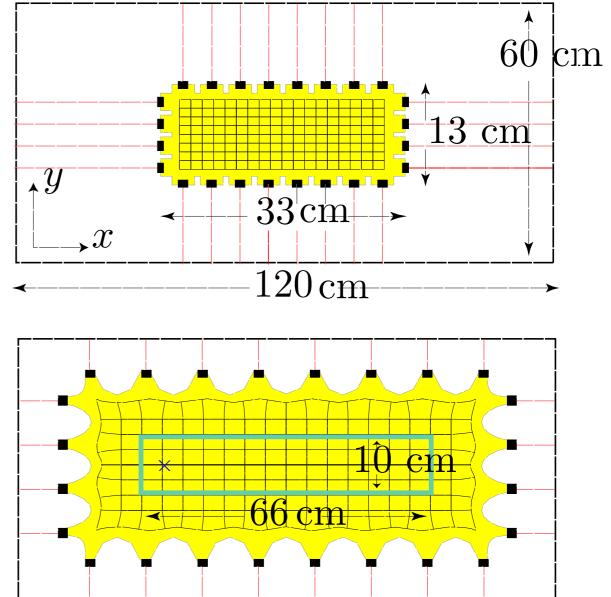
Balloons and First Experiments

Balloons Controlled Experiments

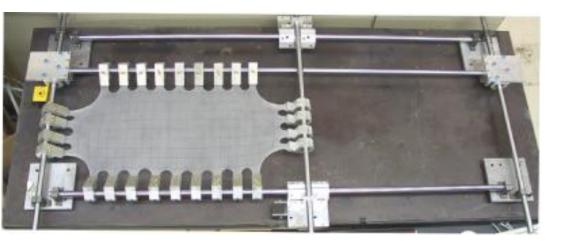


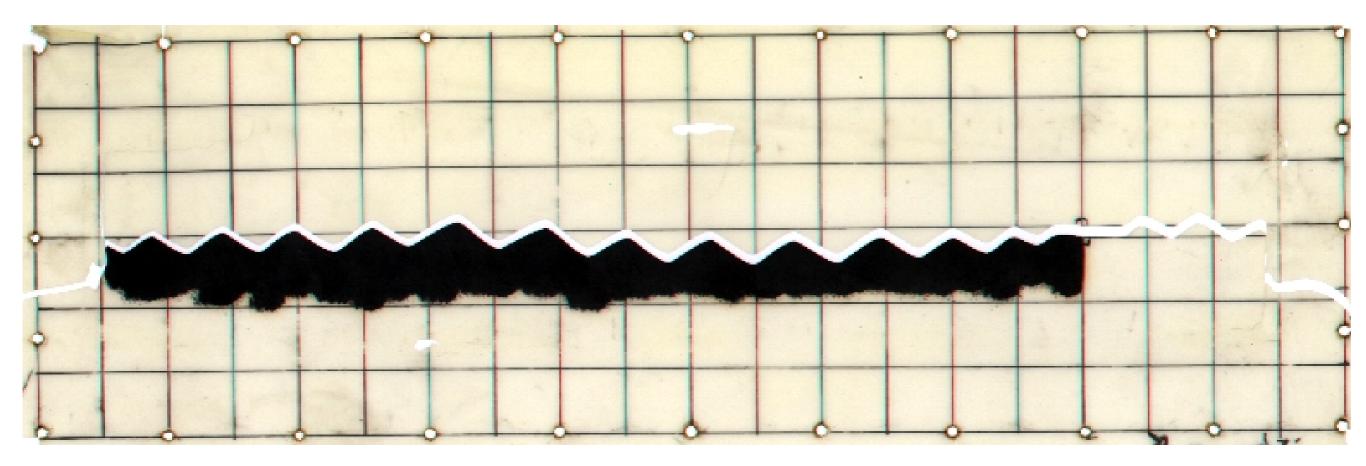
Apparatus



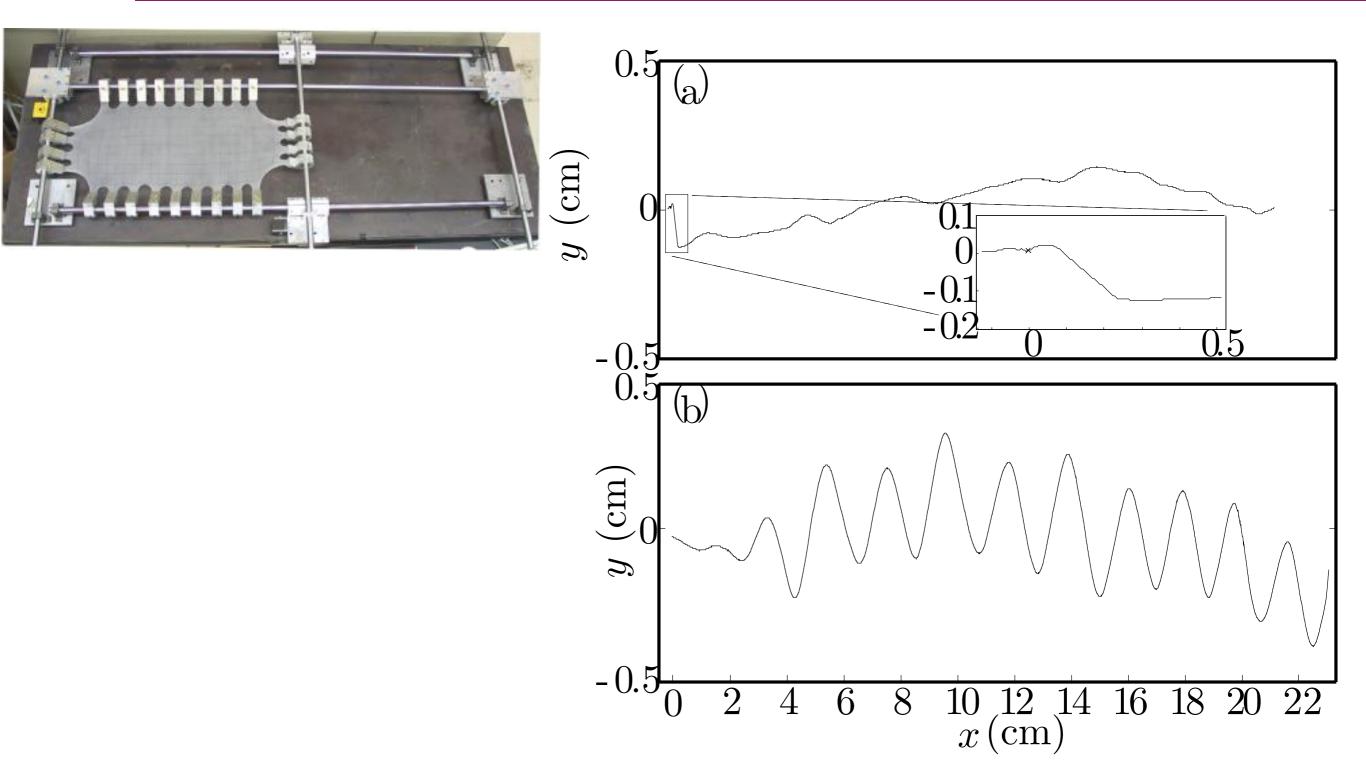


Oscillations

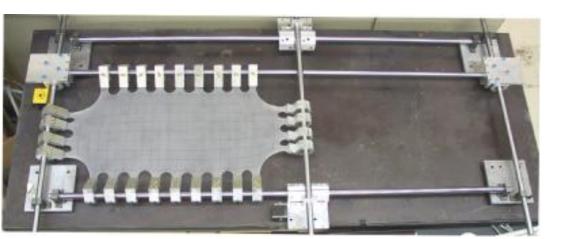


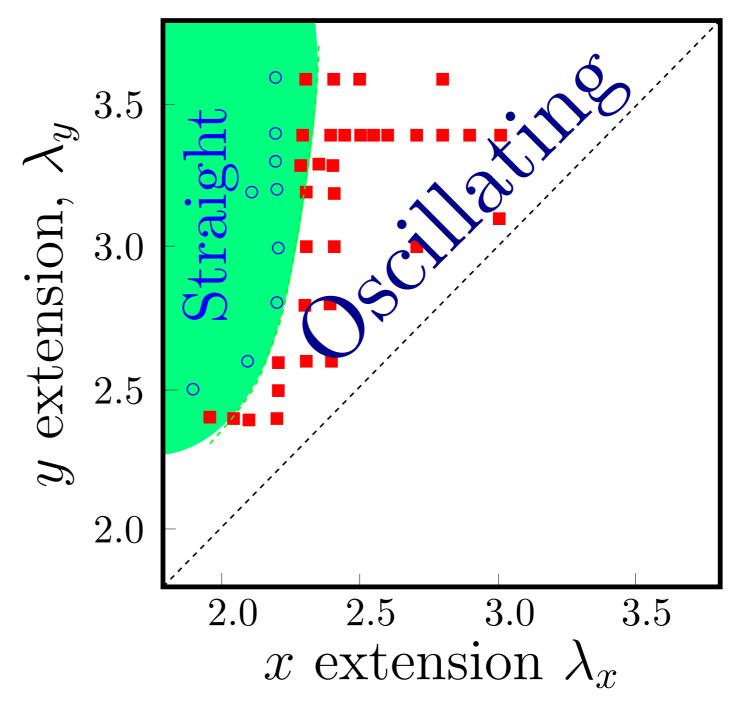


Oscillations

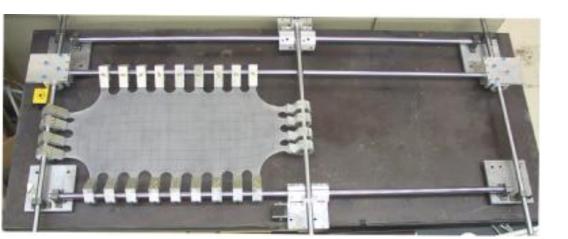


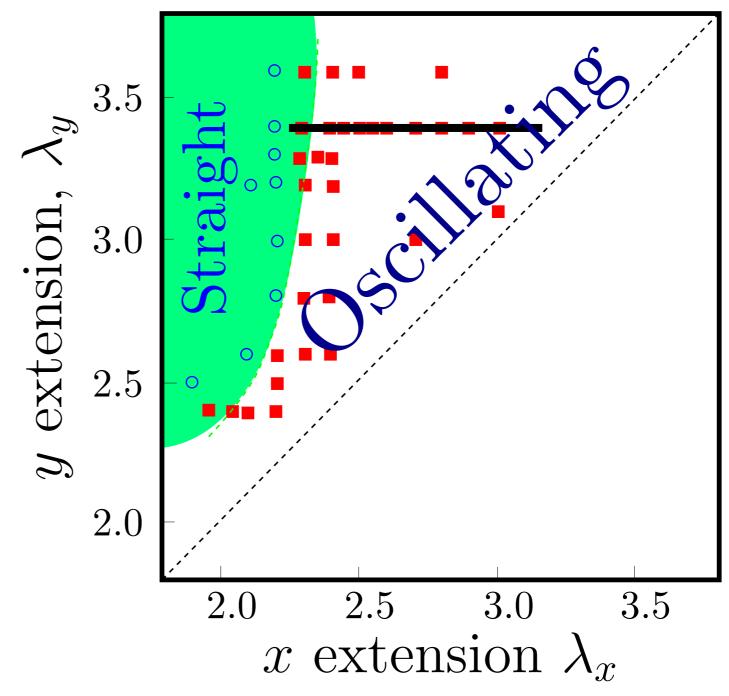
Oscillations



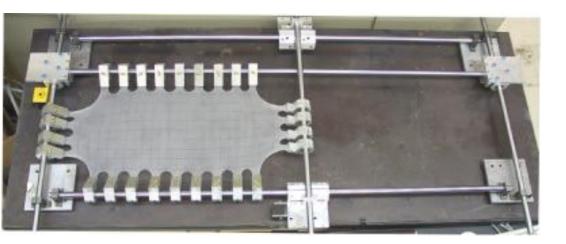


Oscillations

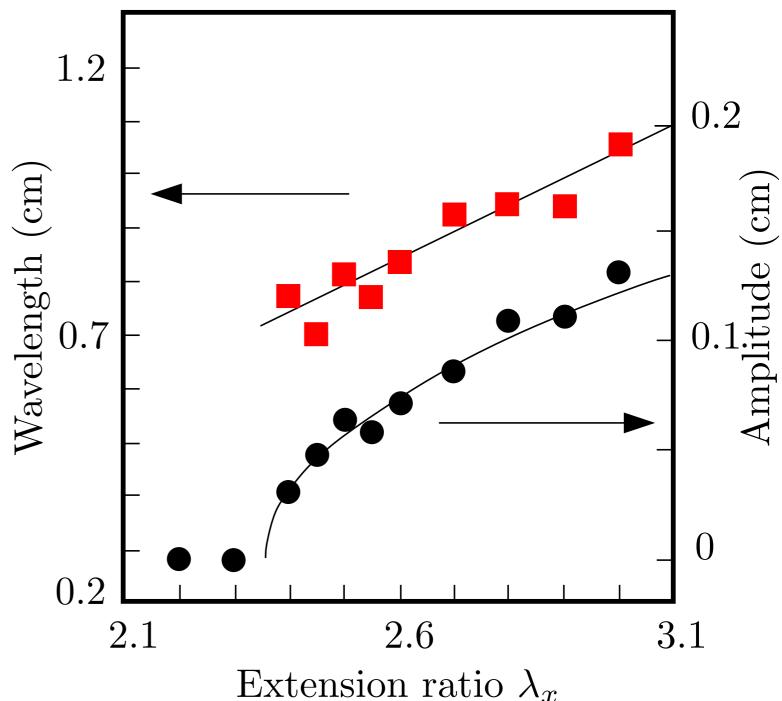




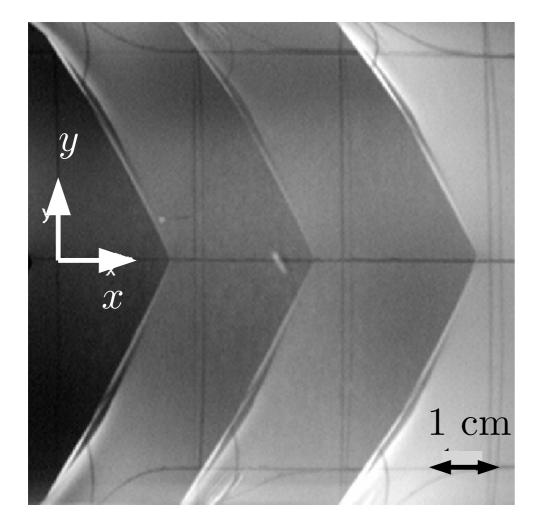
Oscillations



No detailed theory yet for oscillations... but see Yang and Chen, *Phys. Rev. Lett.* **95**, 144301 (2005)



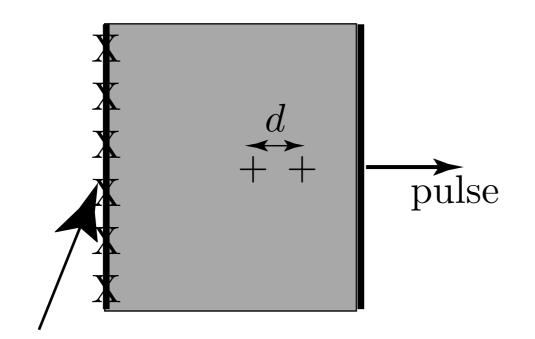
Sound Speeds and Rupture Velocities



Tip has wedge-like shape like Mach cone

Sound Speeds and Rupture Velocities

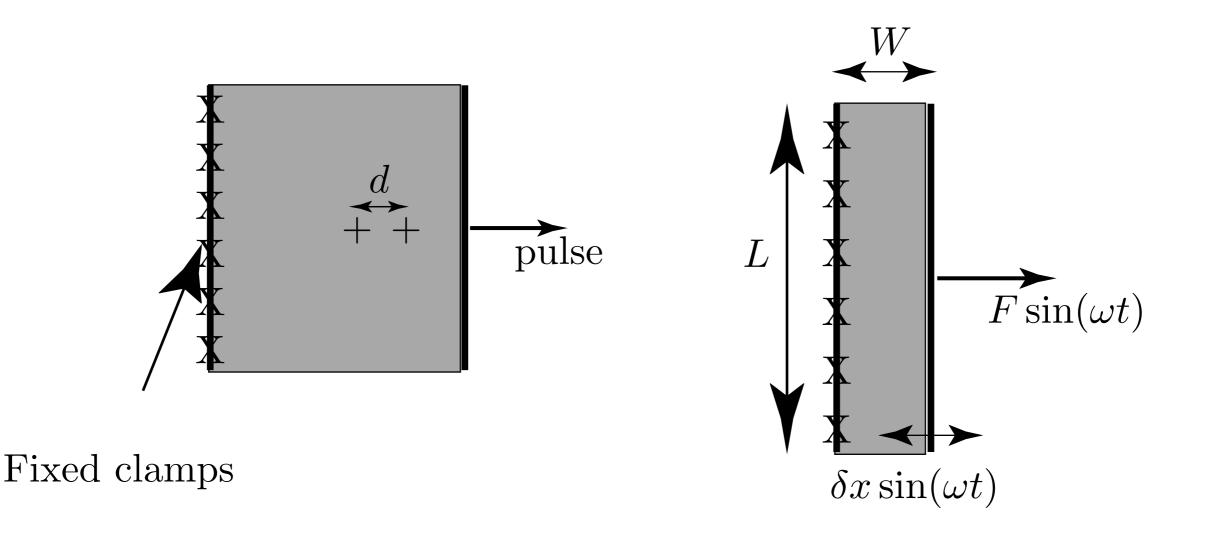
Longitudinal speed measured by time of flight



Fixed clamps

Sound Speeds and Rupture Velocities

Longitudinal speed measured by time of flight Longitudinal speed measured from force extension curves.

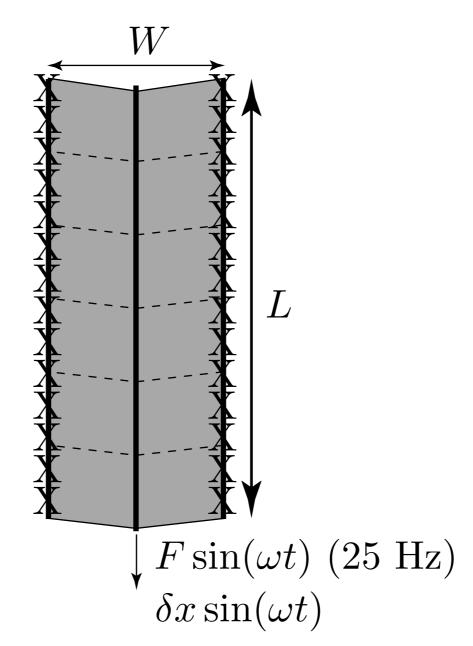


Sound Speeds and Rupture Velocities

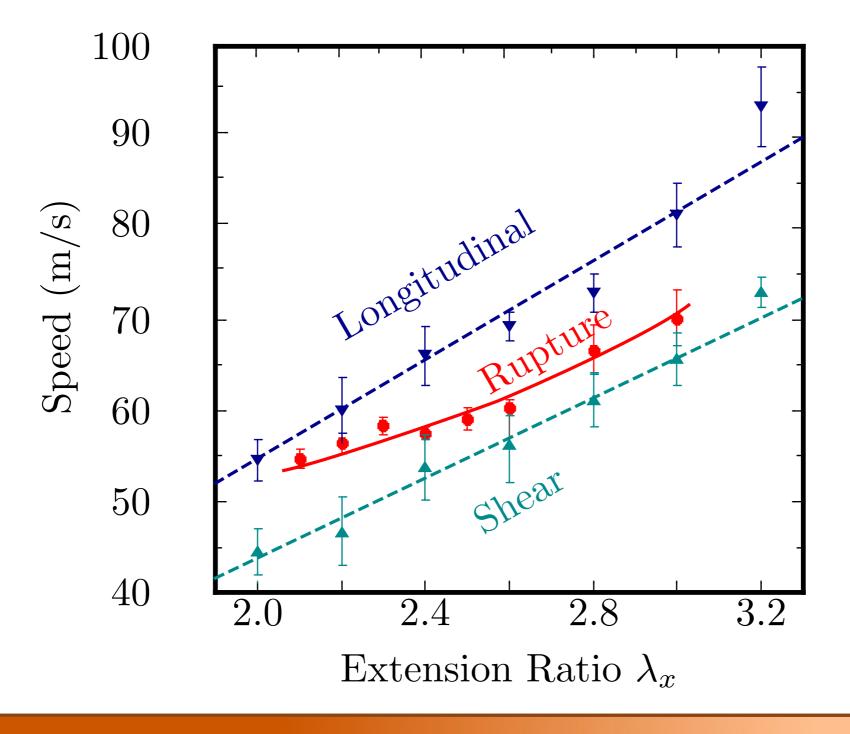
calculated longitudinal wave speed Two methods agree 1.21.1 1.0measured 0.90.82.42.83.2 2.0Extension ratio λ_x

Sound Speeds and Rupture Velocities

Shear wave speed measured from force extension curves.

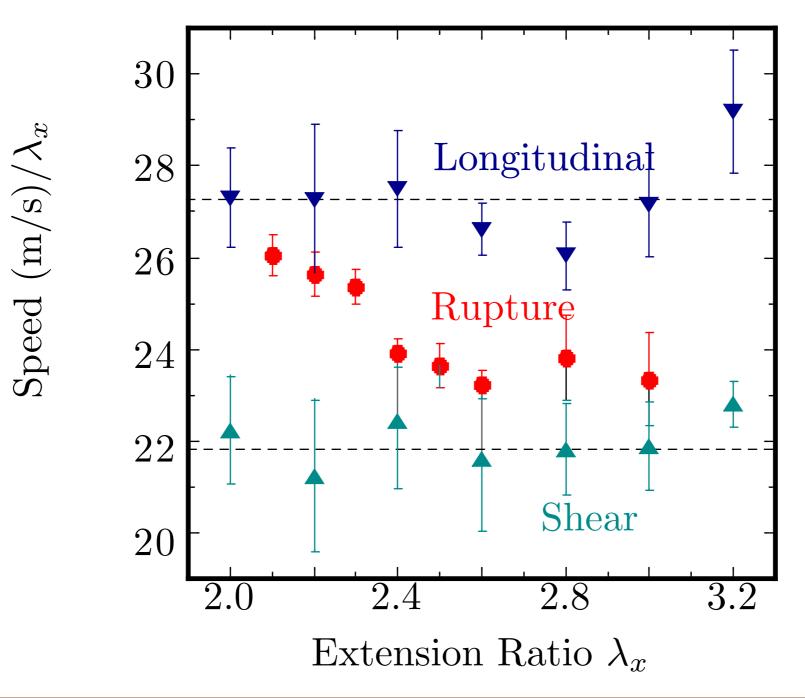


Sound Speeds and Rupture Velocities



Sound Speeds and Rupture Velocities

Transform to reference frame



Sound Speeds and Rupture Velocities

Over range of extensions covered by our experiments $(\lambda_x, \lambda_y \sim 200\%-350\%)$, the speed of sound waves is well described by the Mooney-Rivlin free energy:

 $e(I_1, I_2) = A(I_1 + 2BI_2)$ $= A \left[(E_{xx} + E_{yy} + E_{zz}) + 2B \left(E_{xx} E_{yy} - E_{xy}^2 \right) + 2B E_{zz} I_2 \right]$

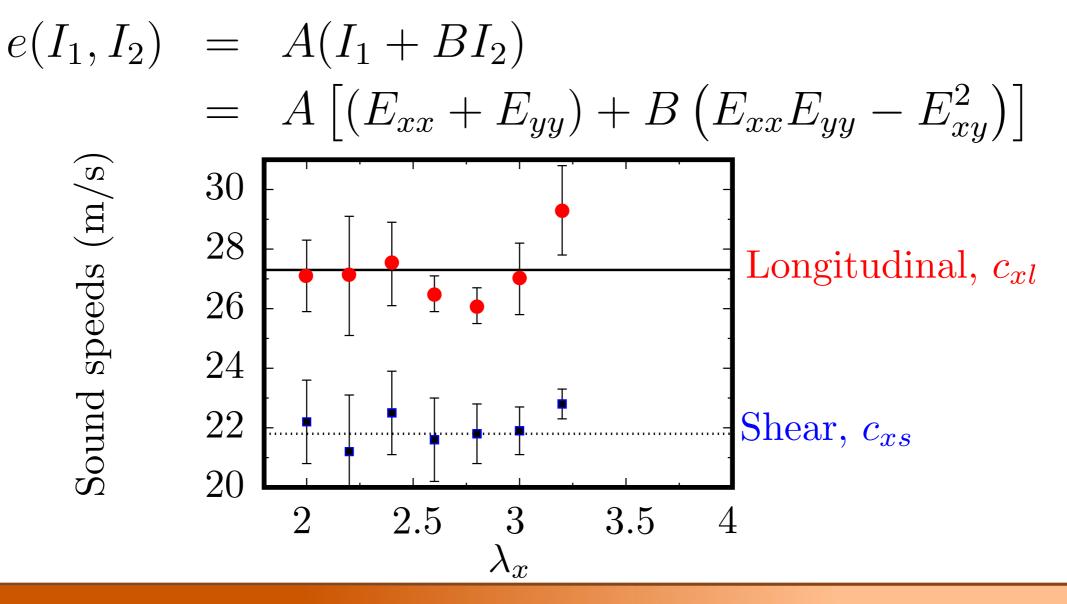
Sound Speeds and Rupture Velocities

Over range of extensions covered by our experiments $(\lambda_x, \lambda_y \sim 200\%-350\%)$, the speed of sound waves is well described by the Mooney-Rivlin free energy:

$$e(I_1, I_2) = A(I_1 + 2BI_2) = A\left[(E_{xx} + E_{yy} + E_{zz}) + 2B\left(E_{xx}E_{yy} - E_{xy}^2 \right) + 2BE_{zz}I_2 \right]$$

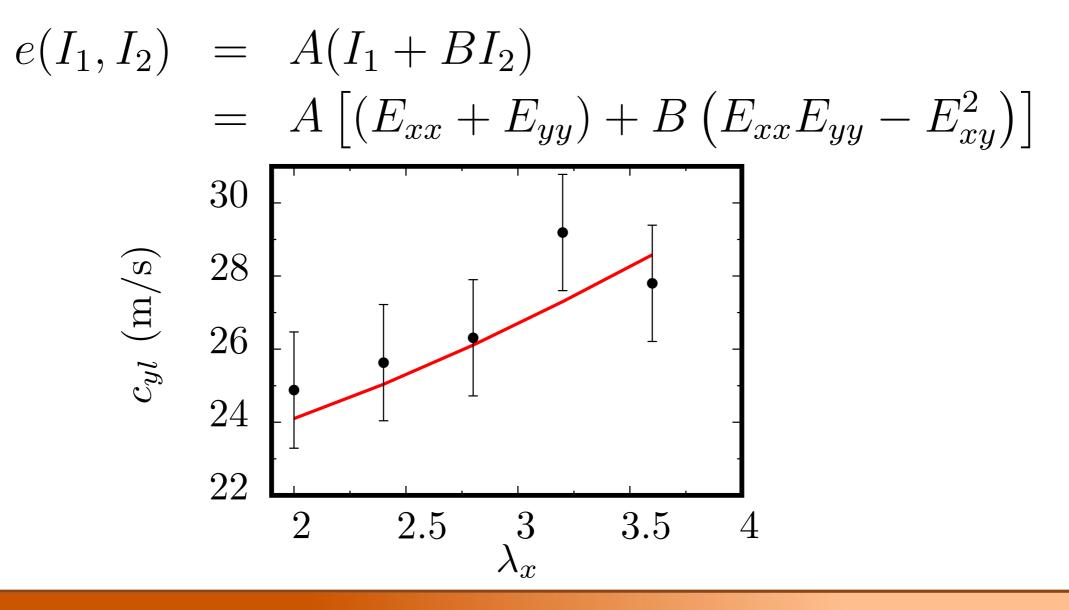
Sound Speeds and Rupture Velocities

Over range of extensions covered by our experiments $(\lambda_x, \lambda_y \sim 200\%-350\%)$, the speed of sound waves is well described by the Mooney-Rivlin free energy:



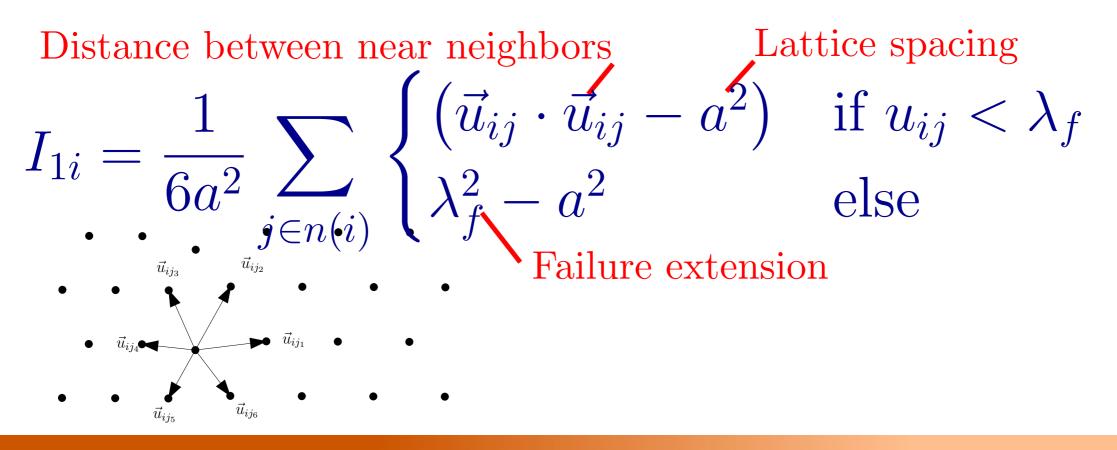
Sound Speeds and Rupture Velocities

Over range of extensions covered by our experiments $(\lambda_x, \lambda_y \sim 200\%-350\%)$, the speed of sound waves is well described by the Mooney-Rivlin free energy:



Multi-Particle Modeling

- Tethered Membranes (Nelson, et al.)
- Virtual Bond Method (Gao and Klein)
- Peridynamics (Silling and Bobaru)
- Mesodynamics (Holian)



Multi-Particle Modeling

$$F_{i} = \frac{1}{6} \sum_{j \in n(i)} \begin{cases} \left(\vec{u}_{ij} \cdot \vec{u}_{ij} - a^{2}\right) & \text{if } u_{ij} < \lambda_{f} \\ \lambda_{f}^{2} - a^{2} & \text{else} \end{cases}$$

$$G_{i} = \frac{1}{9} \sum_{j \in n(i)} \begin{cases} \left(\vec{u}_{ij} \cdot \vec{u}_{ij} - a^{2}\right)^{2} & \text{if } u_{ij} < \lambda_{f} \\ \left(\lambda_{f}^{2} - a^{2}\right)^{2} & \text{else} \end{cases}$$

$$H_{i} = \frac{1}{27} \sum_{j \neq k \in n(i)} h(u_{ij})h(u_{ik}) \left(\vec{u}_{ij} \cdot \vec{u}_{ik} + 2a^{2}\right)^{2},$$
and $h(u) = 1/(1 + e^{(u - \lambda_{f})/u_{s}}).$

$$I_{1}^{i} = \frac{F_{i}}{a^{2}}$$

$$I_{2}^{i} = \frac{3}{4} \frac{1}{a^{4}} \left(F_{i}^{2} - G_{i}\right),$$

or alternatively,

$$I_2^i = \frac{9}{8} \frac{1}{a^4} \left(G_i - H_i + 4 \right).$$

Investigations

• Obtained ruptures resembling experiment. What was needed, what was not?

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts

Investigations

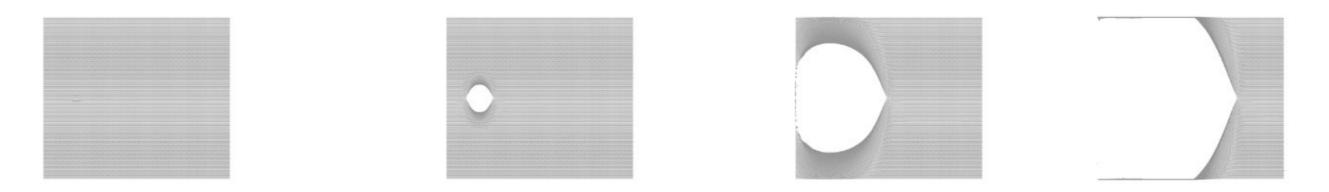
- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts
- Second term in Mooney-Rivlin theory proportional to I_2

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts
- Second term in Mooney Rivlin theory proportional to I_2

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts
- Second term in Mooney Rivlin theory proportional to I_2
- Dissipation (Kelvin, proportional to relative motion of neighbors)



Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts
- Second term in Mooney Rivlin theory proportional to I_2
- Dissipation (Kelvin, proportional to relative motion of neighbors) Yes. $\beta c^2 \nabla^2 \frac{\partial u}{\partial t}$...(or more elaborate models)

CNLL

Numerical Studies

Investigations

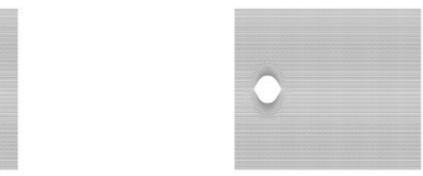
- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts
- Second term in Mooney Rivlin theory proportional to I_2
- Dissipation (Kelvin, proportional to relative motion of neighbors) Yes. $\beta c^2 \nabla^2 \frac{\partial u}{\partial t}$...(or more elaborate models)
- Toughening behind tip

CNLL

Numerical Studies

Investigations

- Obtained ruptures resembling experiment. What was needed, what was not?
- Increase in sound speed near tip of rupture (hyperelasticity)
- Increase in sound speed as rubber retracts
- Second term in Mooney Rivlin theory proportional to I_2
- Dissipation (Kelvin, proportional to relative motion of neighbors) • Yes. $\beta c^2 \nabla^2 \frac{\partial u}{\partial t}$...(or more elaborate models)
- Toughening behind tip
- Yes

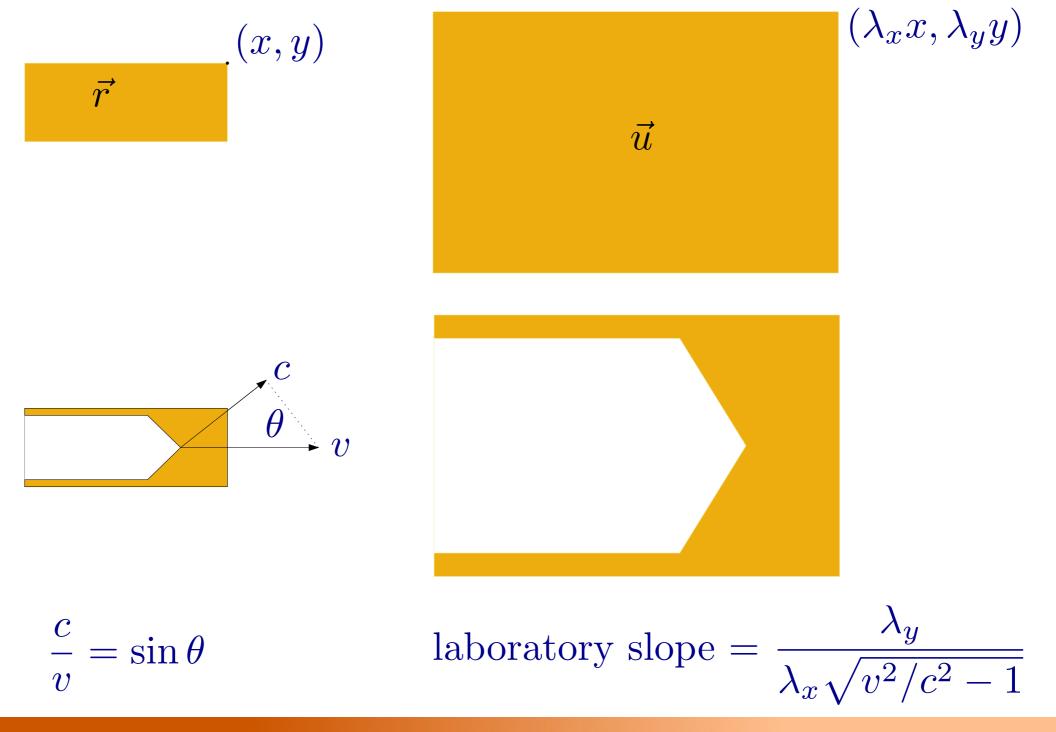


Theoretical Views

Elementary Considerations

Reference Frame

Laboratory Frame



Theoretical Views

Continuum Theory

Following suggesion of Rice (following Shield) adopt Neo–Hookean theory. Horizontal displacements are static, so obtain theory for vertical displacement u.

$$\ddot{u} = c^2 \nabla^2 u + c^2 \beta \nabla^2 \dot{u}$$

• u is not small.

• β describes Kelvin dissipation $(E_{\infty} \to \infty)$

Boundary conditions:

$$\frac{\partial u}{\partial y} = -\beta \frac{\partial^2 u}{\partial t \partial y} \quad \text{for} \quad x < 0; \quad u = 0 \quad \text{for} \quad x > 0.$$

Theoretical Views Continuum Theory This theory has supersonic solutions (v > c). Recover laboratory slope of back edge = $-\frac{\lambda_y}{\lambda_x \sqrt{v^2/c^2 - 1}}$ At the origin, the slope of the rupture is $\left. \frac{\partial u}{\partial y} \right|_{x=0, u=0} = \frac{\lambda_y}{\sqrt{1 - c^2/v^2}}.$ The theory can be closed with rupture criterion $\frac{\lambda_y}{\sqrt{(4\lambda_f^2 - \lambda_x^2)/3}} = \sqrt{1 - c^2/v^2}$

CNLD

Theoretical Views

Continuum Theory

Kelvin dissipation Sound speed

Lattice spacing

- Dimensionless measure of dissipation is $\beta c/\Delta$: this theory applies when $\beta c/\Delta \ge 1$.
- Displacements and strains are finite near tip.
- Stress diverges as $\exp[-x/(\beta c)]/\sqrt{x}$ near tip
- There is no energy release.

Discrete Theory

Discrete theory can be solved using Wiener-Hopf techniques (Slepyan, MPM); find rupture speeds of 800-million-particle systems in five minutes

$$\ddot{u}_i^y = \frac{2c^2}{3a^2} \sum_{j \in n(i)} \left(u_{ij}^y + \beta \dot{u}_{ij}^y \right) \theta(\lambda_f - u_{ij}).$$

Discrete Theory

Discrete theory can be solved using Wiener-Hopf techniques (Slepyan, MPM); find rupture speeds of 800-million-particle systems in five minutes

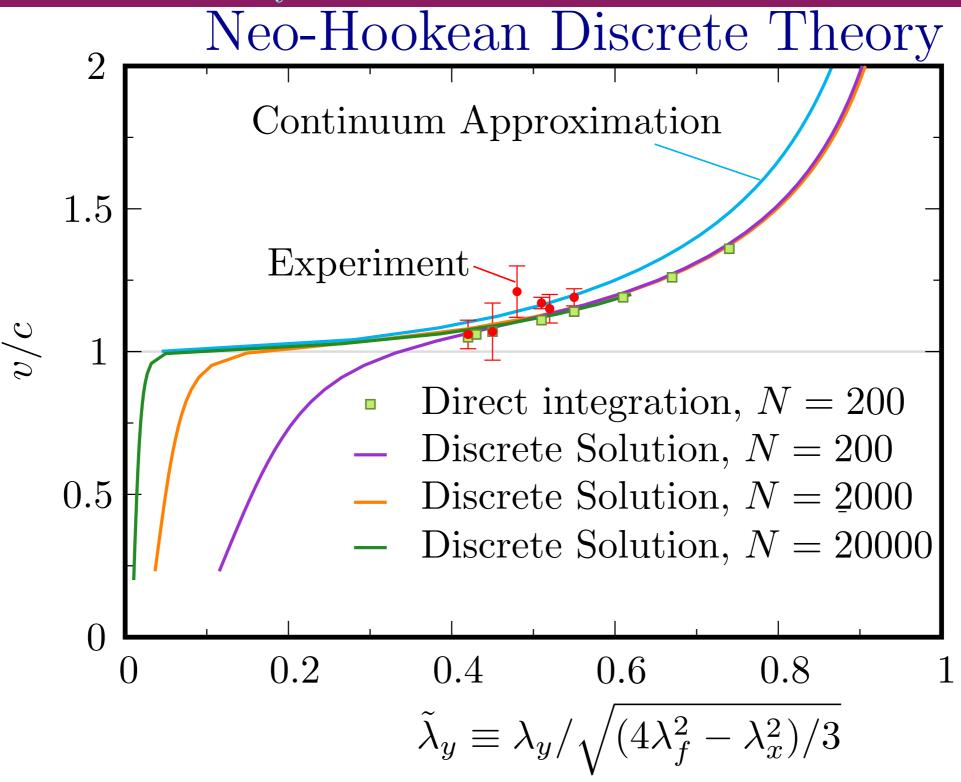
$$\ddot{u}_{i}^{y} = \frac{2c^{2}}{3a^{2}} \sum_{j \in n(i)} \left(u_{ij}^{y} + \beta \dot{u}_{ij}^{y} \right) \theta \left(\lambda_{f} - u_{ij} \right)$$
$$\tilde{v} = v/c, \ \tilde{\beta} = \beta c/a; z = \frac{3 - \cos(\omega/\tilde{v}) - 3\omega^{2}/[4(1 - i\tilde{\beta}\omega)]}{2\cos(\omega/2\tilde{v})}$$

$$y = z + \sqrt{z^2 - 1} \text{ with } \quad \text{abs}(y) > 1, ; F(\omega) = \left\{ \frac{y^{[N-1]} - y^{-[N-1]}}{y^N - y^{-N}} - 2z \right\} \cos(\omega/2\tilde{v}) + 1$$

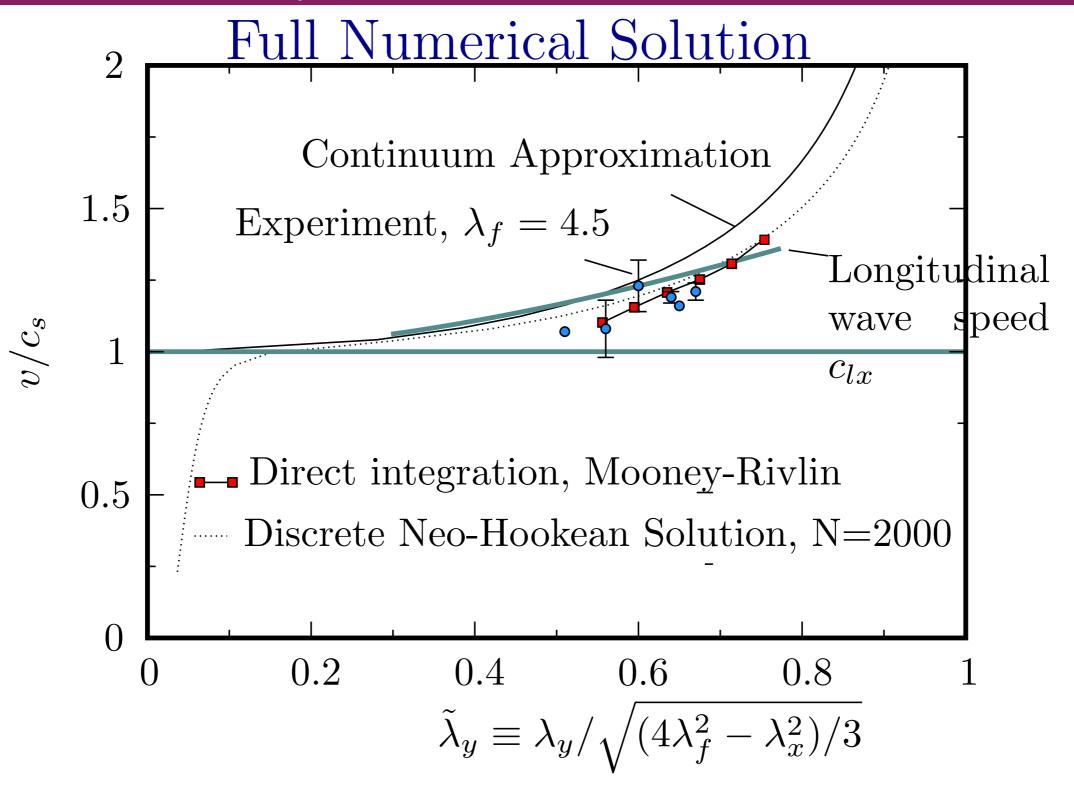
$$Q(\omega) = \frac{F}{F - 1 - \cos(\omega/2\tilde{v})}; \tilde{\lambda}_y = \lambda_y / \sqrt{(4\lambda_f^2 - \lambda_x^2)/3}$$

$$\tilde{\lambda}_{y} = \frac{1}{\sqrt{2N+1}} \exp\left[-\int \frac{d\omega'}{4\pi} \left\{\frac{1}{i\omega'(1+\tilde{\beta}^{2}\omega'^{2})} \left[\ln Q(\omega') - \overline{\ln Q(\omega')}\right] + \frac{\tilde{\beta}\ln|Q(\omega')|^{2}}{1+\tilde{\beta}^{2}\omega'^{2}}\right\}\right].$$

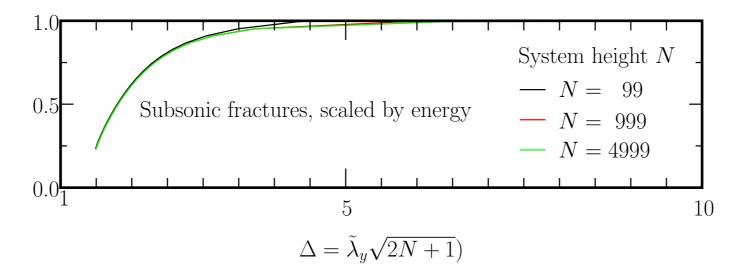
Discrete Theory



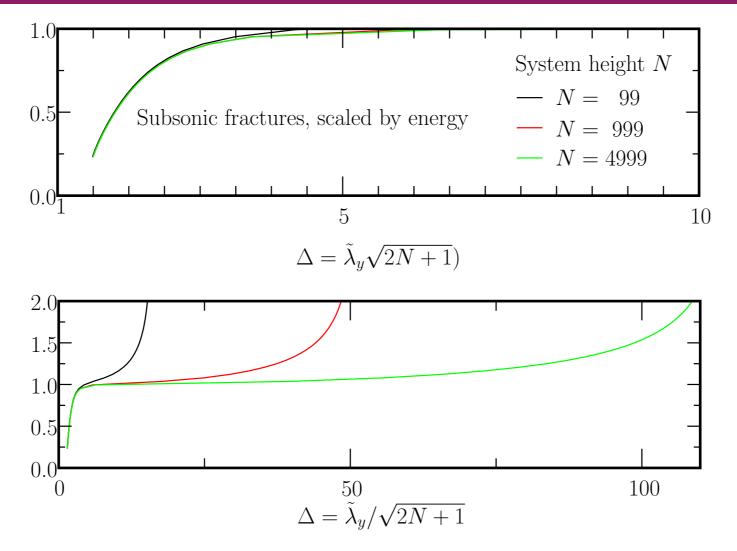
Discrete Theory



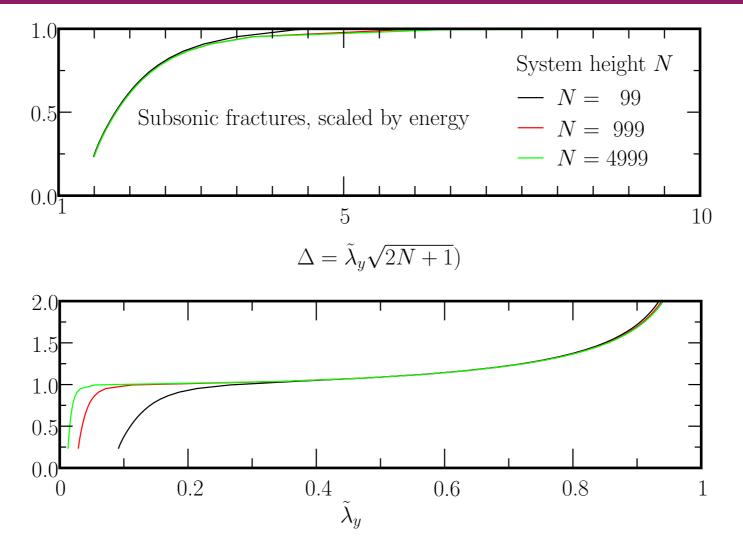
Scaling Theory



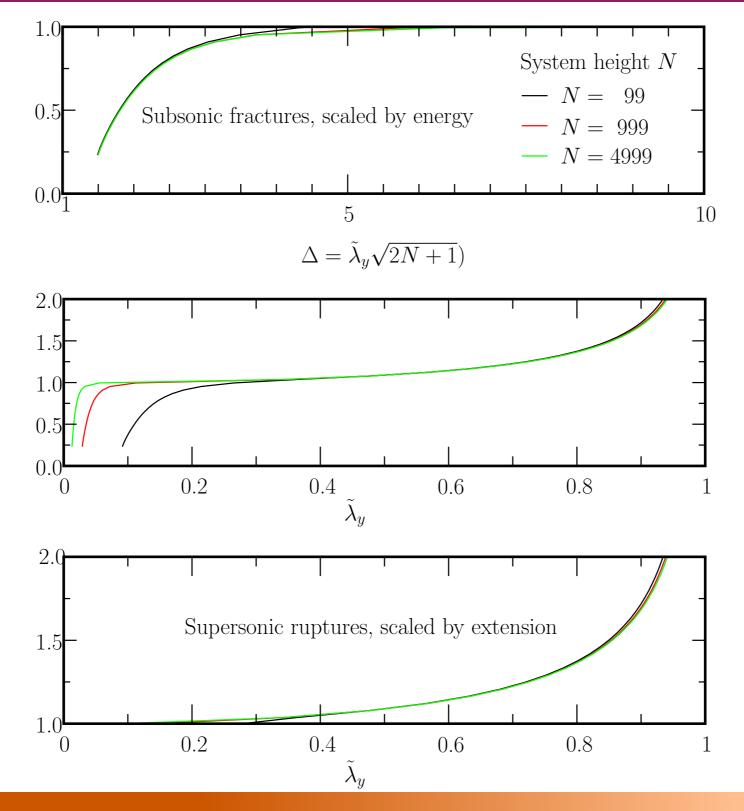
Scaling Theory



Scaling Theory

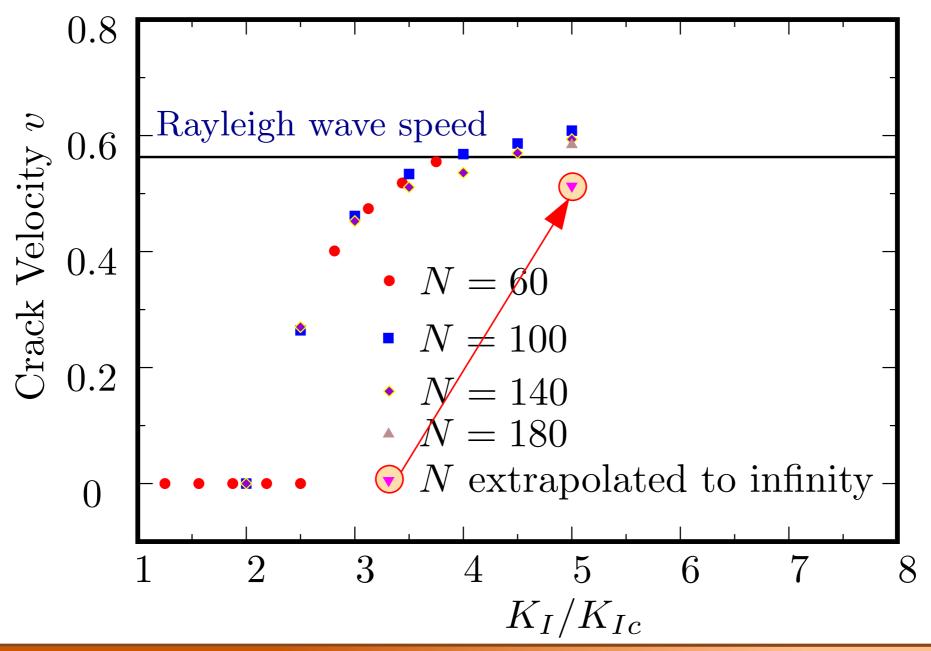


Scaling Theory



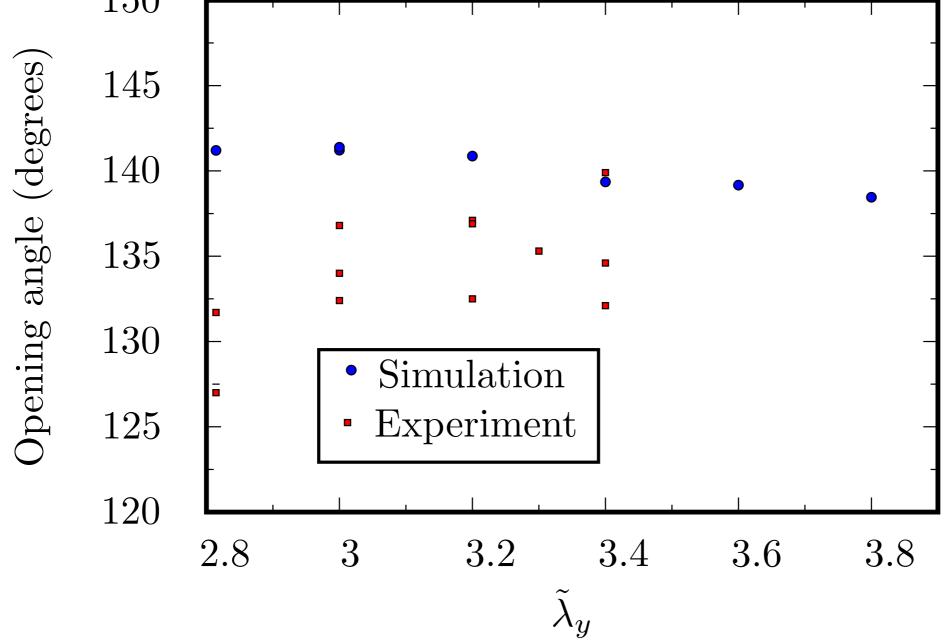
Scaling Theory

Lattice dynamics, constraint of crack along line, explains work of Buehler, Abraham, and Gao (2003), not hyperelasticity



Opening Angles

Opening angle comparisons are less successful (simulations involve all measured features of experiment, including all sound speed variations.) 150



Conclusions

New Sort of Failure

- The rupture is supersonic
- There is no energy release; energy arrives from very near tip.
- Dissipation and toughening of front behind tip are key physical ingredients; variations in sounds speed are present in real system but play no role in theory.
- Problem can be solved exactly in continuum and discrete formulations
- Comparison of rupture speeds with experiment is good.
- Comparison of rupture angles with experiment less satisfactory.
- Oscillatory instability and application to other systems remain to be studied.