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CNLDCNLD BackgroundBackground
Limiting Speed of Cracks

• Rayleigh wave speed limits cracks in tension
(Yoffe, 1951; Stroh, 1957; Freund, 1972)

• Shear waves can also travel at
√

2cs

(Andrews, 1976; Burridge, Conn and
Freund, 1979; Rosakis, Samudrala, Coker,
1999; Gao, Huang, Abraham, 2001)

• In a discrete medium, there is no limit to
the speed of tensile cracks (Slepyan, 1982;
MM, 1995; Buehler, Gao, and Abraham,
2003)

• Integrity of crack surface behind tip is key
to whether supersonic solutions survive
(Ravi-Chandar and Knauss, 1984; Fineberg
et al, 1991; MM)
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Balloons Controlled Experiments

Balloons and First Experiments
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No detailed theory yet
for oscillations... but
see Yang and Chen,
Phys. Rev. Lett. 95,
144301 (2005)
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Over range of extensions covered by our experiments
(λx, λy ∼ 200%–350%), the speed of sound waves
is well described by the Mooney-Rivlin free energy:

e(I1, I2) = A(I1 + 2BI2)

= A
[
(Exx + Eyy + Ezz) + 2B

(
ExxEyy − E2

xy

)
+ 2BEzzI2

]
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• Tethered Membranes (Nelson, et al.)

• Virtual Bond Method (Gao and Klein)

• Peridynamics (Silling and Bobaru)

• Mesodynamics (Holian)

Distance between near neighbors Lattice spacing

Failure extension

~uij1

~uij2~uij3

~uij4

~uij5
~uij6
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CNLDCNLD Numerical StudiesNumerical Studies
Multi-Particle Modeling

I1i =
1

6a2

∑
j∈n(i)

{(
~uij · ~uij − a2

)
if uij < λf

λ2
f − a2 else



Fi =
1

6

X
j∈n(i)

(`
~uij · ~uij − a2

´
if uij < λf

λ2
f − a2 else

Gi =
1

9

X
j∈n(i)

(`
~uij · ~uij − a2

´2
if uij < λf`

λ2
f − a2

´2
else

Hi =
1

27

X
j 6=k∈n(i)

h(uij)h(uik)
`
~uij · ~uik + 2a2´2

,

and h(u) = 1/(1 + e(u−λf )/us).

Ii
1 =

Fi

a2

Ii
2 =

3

4

1

a4

`
F 2

i − Gi

´
,

or alternatively,

Ii
2 =

9

8

1

a4
(Gi − Hi + 4) .
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Multi-Particle Modeling

Obtained ruptures resembling experiment. What was needed, what
was not?
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Obtained ruptures resembling experiment. What was needed, what
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Yes. βc2∇2 ∂u
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Multi-Particle Modeling

Obtained ruptures resembling experiment. What was needed, what
was not?

Increase in sound speed near tip of rupture (hyperelasticity)
Increase in sound speed as rubber retracts
Second term in Mooney-Rivlin theory proportional to I2

Dissipation (Kelvin, proportional to relative motion of neighbors)
Yes. βc2∇2 ∂u

∂t ...(or more elaborate models)

Toughening behind tip

Yes
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θ

laboratory slope =
λy

λx

√
v2/c2 − 1
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v
= sin θ
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Theoretical ViewsTheoretical Views
Reference Frame



ü = c2∇2u + c2β∇2u̇

Following suggesion of Rice (following Shield) adopt Neo–Hookean
theory. Horizontal displacements are static, so obtain theory for
vertical displacement u.

• u is not small.

• β describes Kelvin dissipation (E∞ →∞)

∂u

∂y
= −β

∂2u

∂t∂y
for x < 0; u = 0 for x > 0.

Boundary conditions:
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This theory has supersonic solutions (v > c).

laboratory slope of back edge = − λy

λx

√
v2/c2 − 1

Recover

∂u

∂y

∣∣∣∣
x=0,y=0

=
λy√

1− c2/v2
.

At the origin, the slope of the rupture is

The theory can be closed with rupture criterion
λy√

(4λ2
f − λ2

x)/3
=

√
1− c2/v2
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• Dimensionless measure of dissipation is βc/∆:
this theory applies when βc/∆ ≥ 1.

• Displacements and strains are finite near tip.

• Stress diverges as exp[−x/(βc)]/
√

x near tip

• There is no energy release.

Kelvin dissipation Sound speed
Lattice spacing
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Discrete theory can be solved using Wiener-Hopf techniques
(Slepyan, MPM); find rupture speeds of 800-million-particle
systems in five minutes

üy
i =

2c2

3a2

∑
j∈n(i)

(
uy

ij + βu̇y
ij

)
θ(λf − uij).
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ṽ = v/c, β̃ = βc/a; z =
3 − cos(ω/ṽ) − 3ω2/[4(1 − iβ̃ω)]

2 cos(ω/2ṽ)

y = z +
q

z2 − 1with abs(y) > 1, ; F (ω) =

8<: y[N−1] − y−[N−1]

yN − y−N
− 2z

9=; cos(ω/2ṽ) + 1

Q(ω) =
F

F − 1 − cos(ω/2ṽ)
; λ̃y = λy/

r
(4λ2

f
− λ2

x)/3

λ̃y =
1

√
2N + 1

exp

24− Z dω′

4π

8<: 1

iω′(1 + β̃2ω′2)

h
ln Q(ω

′) − ln Q(ω′)
i
+

β̃ ln |Q(ω′)|2

1 + β̃2ω′2

9=;
35 .
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Opening angle comparisons are less successful (simulations involve
all measured features of experiment, including all sound speed varia-
tions.)
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• The rupture is supersonic

• There is no energy release; energy arrives from very near tip.

• Dissipation and toughening of front behind tip are key physi-
cal ingredients; variations in sounds speed are present in real
system but play no role in theory.

• Problem can be solved exactly in continuum and discrete for-
mulations

• Comparison of rupture speeds with experiment is good.

• Comparison of rupture angles with experiment less satisfac-
tory.

• Oscillatory instability and application to other systems re-
main to be studied.
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ConclusionsConclusions


