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Atomic Solutions 2
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Atomic Solutions 3
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Atomic Solutions 4
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Two-dimensional models 5

(Slepyan, 1980; Kulakhmetova, Saraikin and Slepyan 1984, Marder and Gross 1995,
Kessler and Levine 1999)

☞ Steady-state solutions are analytical

☞ Treat infinite numbers of atoms in all directions

☞ Connect macroscopic and microscopic scales

☞ Develop scaling laws
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Two-dimensional models 6
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Physical reason for velocity gap 7

Because lattice can trap crack, next bond must break in no less than vibrational period T ,
so v > a/T
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Snaps

Because lattice can trap crack, next bond must break in no less than vibrational period T ,
so v > a/T
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Making lattice trapping large and small 15

Can make lattice trapping as large or small as desired by changing shape of potential.
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Making lattice trapping large and small 16

Example where lattice trapping is small:Lennard–Jones potential
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Making lattice trapping large and small 17

Can make lattice trapping vanish by increasing temperature
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Making lattice trapping large and small 18

Can make lattice trapping vanish by increasing dissipation
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Self-healing cracks on interfaces 19

[Williams, Comninou and Dundurs, Freund, Rice]

Existence of cracks solutions of this type has been doubted

Solutions are

☞ mathematically troublesome

☞ Crack surfaces oscillate and cross one another infinitely often.
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Self-healing cracks on interfaces 20

Crack surfaces oscillate and cross one another infinitely often.
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Paradoxes 21

Crack surfaces oscillate and cross one another infinitely often.
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Interface solutions 22
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Steady states 23

Steady-state hypothesis:
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v is the crack velocity, and s is the syncopation.
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Interface solutions 24
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Multiscale Analysis 25

Atomic methods cannot describe self-healing cracks

Why not?

They only treat one tip at a time

What to do?

Carry out companion continuum analysis.

Match near-tip continuum fields to far-field atomic solution
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Scaling of Atomic Solution 26

�

Time traces for atoms near the tip have a universal form dictated by the velocity v and
syncopation s.
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Scaling of Atomic Solution 27
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Dx and Dy are displacements of upper boundary. The loading must rotate with system
size to reveal the universality.

Crack tip can be in tension while boundary is in compression.
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Stress Rotation 28
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Stress Rotation 29
� � � ��� � ��� �

Identical fields at crack tip requires rotation of external loads as sample size changes.
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Single tip 30

Crack-tip singularity has form
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Single tip 31
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Two tips 32

�

Rigid substrate
Logarithmically oscillating singularity

Φ(z) = A1(z− t)λ(z+ t)λ̄ +A2(z− t)λ(z+ t)λ̄+1 + c.c.

Continuum: Self–healing crack of length l and velocity v is described by four constants,
corresponding to

• Stresses σxy and σyy at infinity.
• Slip in x and y direction produced by crack.

or

• Real and imaginary parts of stress intensity factors at two crack tips.

Microscopic: Self–healing crack of length of l and velocity v is described by two
constants, corresponding to syncopations s f and sb front and back.
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Assemble results 33

Predicting Friction

Catalog of 100,000 self-healing crack states.
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Assemble results 34
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Scenario and questions 35

Questions:

☞ Nucleation?

☞ Interaction?

☞ Temperature?

☞ Do results depend upon crystallinity?

☞ What is effect of surface roughness?

☞ Can these states coexist with asperities?

☞ How can they be detected experimentally?

☞ In what systems?

27th October 2005
c©2004, Michael Marder



Scenario and questions 36

27th October 2005
c©2004, Michael Marder


