Velocity Gap and Interface Cracks

Michael Marder, Eric Gerde (Flip Kroemer and Vaggelis Meintanis) Center for Nonlinear Dynamics

The University of Texas at Austin

Supported by the National Science Foundation

Atomic Solutions

Atomic Solutions

Atomic Solutions

Two-dimensional models

(Slepyan, 1980; Kulakhmetova, Saraikin and Slepyan 1984, Marder and Gross 1995, Kessler and Levine 1999)

- Steady-state solutions are analytical
- Treat infinite numbers of atoms in all directions
- Connect macroscopic and microscopic scales
- Develop scaling laws

Two-dimensional models

27th October 2005 © 2004, Michael Marder

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Because lattice can trap crack, next bond must break in no less than vibrational period *T*, so v > a/T

Can make lattice trapping as large or small as desired by changing shape of potential.

Example where lattice trapping is small:Lennard–Jones potential

Can make lattice trapping vanish by increasing temperature

[Williams, Comninou and Dundurs, Freund, Rice] Existence of cracks solutions of this type has been doubted Solutions are [Williams, Comninou and Dundurs, Freund, Rice] Existence of cracks solutions of this type has been doubted Solutions are

mathematically troublesome

[Williams, Comninou and Dundurs, Freund, Rice]

Existence of cracks solutions of this type has been doubted

Solutions are

- and the mathematically troublesome
- Crack surfaces oscillate and cross one another infinitely often.

Self-healing cracks on interfaces

Crack surfaces oscillate and cross one another infinitely often.

Paradoxes

Crack surfaces oscillate and cross one another infinitely often.

Do these cracks exist?

Crack height

Interface solutions

Steady-state hypothesis:

$$\mathbf{u}_{mn}(t) = \mathbf{u}_{0n} \left(t - \frac{m}{v} \right)$$
(1)
$$\mathbf{u}_{mn}(t) = \mathbf{u}_{0n} \left(t - \frac{m}{v} \right)$$

$$\mathbf{u}_{nn}(t) = \mathbf{u}_{0n} \left(t - \frac{m}{v} \right)$$

v is the crack velocity, and s is the syncopation.

Left bonds break at times

$$t = \dots, \frac{-2}{v}, \frac{-1}{v}, 0, \frac{1}{v}, \frac{2}{v}, \dots$$
$$t = \dots, \frac{-2}{v} + s, \frac{-1}{v} + s, s, \frac{1}{v} + s, \frac{2}{v} + s, \dots$$

27th October 2005 © 2004, Michael Marder

Interface solutions

27th October 2005 © 2004, Michael Marder

Why not?

Why not?

They only treat one tip at a time

Why not?

They only treat one tip at a time

What to do?

Why not?

They only treat one tip at a time

What to do?

Carry out companion continuum analysis.

Why not?

They only treat one tip at a time

What to do?

Carry out companion continuum analysis.

Match near-tip continuum fields to far-field atomic solution

Time traces for atoms near the tip have a universal form dictated by the velocity v and syncopation s.

$$\frac{c_s D'_x + i c_d D'_y}{c_s D_x + i c_d D_y} = \left(\frac{N'}{N}\right)^{\frac{1}{2} - i\epsilon(v)}$$

Scaling of Atomic Solution

 D_x and D_y are displacements of upper boundary. The loading must rotate with system size to reveal the universality.

Crack tip can be in tension while boundary is in compression.

Stress Rotation

Identical fields at crack tip requires rotation of external loads as sample size changes.

Crack-tip singularity has form

Single tip

$$\sigma \propto r^{\lambda} \equiv r^{-1/2+i\epsilon}$$
 where ϵ is real.

$$\begin{split} q^2 + 2pq + 1 &= 0 \\ q &= e^{2\pi i\lambda}, \\ q &= -p \pm \sqrt{p^2 - 1}, \\ p &= 1 + \frac{2\left((1 + \beta^2) - 2\alpha\beta\right)^2}{(\alpha\beta - 1)\left((1 + \beta^2)^2 - 4\alpha\beta\right)} \\ \alpha &= \sqrt{1 - v^2/c_l^2} \quad \beta &= \sqrt{1 - v^2/c_t^2}. \end{split}$$

Two tips v Rigid substrate Logarithmically oscillating singularity

$$\Phi(z) = A_1(z-t)^{\lambda}(z+t)^{\bar{\lambda}} + A_2(z-t)^{\lambda}(z+t)^{\bar{\lambda}+1} + \text{c.c.}$$

Continuum: Self-healing crack of length l and velocity v is described by four constants, corresponding to

- Stresses σ_{xy} and σ_{yy} at infinity.
- Slip in *x* and *y* direction produced by crack.

or

• Real and imaginary parts of stress intensity factors at two crack tips.

Microscopic: Self-healing crack of length of l and velocity v is described by two constants, corresponding to syncopations s_f and s_b front and back.

Assemble results

Predicting Friction

Catalog of 100,000 self-healing crack states.

Assemble results

Scenario and questions

Questions:

- Nucleation?
- Interaction?
- Temperature?
- To results depend upon crystallinity?
- What is effect of surface roughness?
- Can these states coexist with asperities?
- How can they be detected experimentally?
- In what systems?

Scenario and questions

