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Summary

= Avalanche behavior in nature

= Explaining avalanches: the Self-Organized Criticality (SOC)
concept

= A SOC example: sandpiles
= Boundary conditions: Sandpiles are not SOC ...

= Avalanches without SOC ?
Two not so typical examples
= Turbidite deposition
= Internet storms

= Conclusions
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Avalanches in nature

= The activity of many complex systems, composed by many
interacting units, is characterized by an avalanche behavior

Long times of quiescence, interspersed by bursts of sudden and
very strong activity, that last a relatively short time

= Typical characteristic of avalanche activity
Avalanche size distributed according to a power law

P(s) ~s 7

= Power law activity has been associated with natural catastrophes
Many physical systems show however this kind of behavior

= Examples ...
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Earthquakes

Earthquakes typically
result from the
movement of geological
faults

After long time

accumulating stress, it
T F] IS released in a sudden
(and catastrophic) way
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Earthquakes
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Gutenberg-Richter law

The probability of observing an
earthquake of a given size
(magnitude) decreases as a

power law



Extinctions

= Extinction of species
takes place in short
episodes (extinction
events) that can involve
a large number of
species

= Some extinction events
have been explained as

real catastrophes
(Alvarez at al., 1980)

= Many extinctions cannot
be explained this way

Competition stress
between species
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Extinctions
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= The distribution of the size (fraction of species involved) in
extinction events is approximately given by a power law
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Superconductor vortices

=  When a type IT superconductor
is driven by a slowly increasing
magnetic field, vortex lines
move inside the sample in a
collective avalanche-like way

= This motion is due to the
interplay among vortex
intferactions, quenched disorder,
and field driving

(Altshuler at al., 2004)
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Superconductor vortices

= The size of the avalanches,
measured as the number of
vortices involved in the
movement, scales as a power law

(Aegerter at al., 2003)
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Other avalanche examples

Physics
Dislocation motion
Barkhausen effect
Charge density waves ...

Complex systems
Forest fires
Landslides
Traffic jams
Snow avalanches ...
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An explanation for avalanche behavior?

The wide observation of avalanche behavior with a power law
distribution calls for some mechanism to explain it
Per Bak et al. argument (1987):

Power law behavior is common in standard critical points

Systems with avalanches could be placed at a critical point?

Standard critical points are reached by adjusting tuning parameters ...

Is it possible to have systems that adjust themselves, without any
external control, to a critical point?

The existence of such systems can explain the presence of power
laws in nature

Concept of Self-Organized Criticality (SOC) Il

KITP, Santa Barbara, 2005 11



logo LP~ 1 P(s)

An example of SOC

Bak-Tang-Wiesenfeld sandpile model
Grains of sand (energy) are injected on a lattice
Conserved threshold dynamics

of energy |
Energy is lost at the boundary ‘ - -

The addition of a grain of energy can ““Toppling evenf
lead to an avalanche of activity

= The size of the avalanches

(number of toppling events)
scales as a power law.

= Moreover, it shows critical
behavior: finite-size scaling

P(s) = s~ f(s/L")
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A closer look at boundary conditions ...

= So sandpile models seem to exhibit SOC (we have tuned no parameter)

= Let's have a closer look at the boundary conditions ...
Driving: We are adding energy when there is no activity (no topplings)
Dissipation: Energy dissipates at the boundary when there is activity
= Look at the energy E in the system ...
If E is large, there will be activity
If E is small, there will be no activity
= Balance of the energy ..
E large — There is dissipation - dE/d t<0
E small -+ There is driving - dE/dt>0
= Boundary conditions are driving the system to a particular value of the
energy E_,
= If this energy corresponds to a critical point:

Sandpiles would have a built-in "baby-sitter” driving them to a conventional

critical point (Dickman et al. 2000) !
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Firing the baby-sitter ...

Consider a sandpile model in which we have fired the baby-sitter
No driving (no particles added)
No dissipation (periodic boundary conditions)

Fixed energy sandpile (FES)

Control parameter: energy of the system E
E small — no sites above threshold — the system is frozen
= Absorbing phase
E large — some sites above threshold — the system is active
= Active phase
The transition between active and absorbing phases is a

standard dynamic critical point (absorbing-state phase
transition) taking place at a critical value of the energy E,
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Absorbing-state phase transition in FES

General absorbing-state phase transitions can be studied by the

methods used for general critical points

Definition in terms of a set of critical exponents (B, v, v|)

P~ (E o Ec)ﬂv f ~ (E o EC)_VJ_7 T~ (E _ Ec)_l/“

Computer simulations show that
indeed FES undergo a completely
standard absorbing-state phase,
characterized by a set of exponents

that define the universality class i0°

of sandpiles <

(RPS & Vespignani, 2000
KITP, Santa Barbara, 2005
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Sandpiles are not self-organized ..

= Further observations:
The critical energy of the FES E. and the average energy of the
sandpile coincide
The sandpile critical exponents (t, D) can be related to the FES
exponents (B, v, ,v)

= Conclusion: Sandpiles are the other side of the coin of a

standard absorbing-state transition critical point

Instead of adjusting the value of the control parameter, we adjust
the boundary conditions so that the system is driven to the critical
point

= From a more technical point of view:
Sandpiles are spreading experiments in FES

= Measure of activity created by a single active site at the
critical point
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Field-theory for sandpiles

If sandpiles are systems with an absorbing-state phase transition, it
should be possible to characterize them by a field-theory (Reggeon
field-theory for directed percolation)

Too difficult for sandpiles (threshold dynamics)
Universality conjecture (Rossi, RPS, & Vespiganani, 2000):

All systems with the same symmetries as sandpiles belong to the
same universality class

Checking the conjecture with non-sandpile models
Conserved lattice gas (Rossi, RPS & Vespignani, 2000)
Reaction-diffusion system (RPS & Vespignani, 2000)

Look for a model in the same universality class that is easier to treat
analytically
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Field-theory for sandpiles

= Consider a reaction-diffusion process with the same symmetries
(in the same universality class)

B—A4 with rate kq,

B+A4—2B with rate k.

= A field-theory can be constructed a using standard formalism
(Doi, Peliti, ...):

p=DV > Yp—rip—u " —ur b+,

(e, 0)my(x",0"))=2u f(x,0) S(x—x") (1 —1")
(.0 my(x" 1)) = —urih(x,0) S(x—x") S(1—1")

) ) <77q')(x?f)77q5(xfaf’)>:0
(RPS & Vespignani, 2000)
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Can we explain avalanches without SOC?

= SOC (or at least sandpiles) does not seem to be a robust
paradigm to explain in general the wide presence of power law
avalanche behavior in complex systems

They are implicitly tuned to a standard critical point by boundary
conditions

= Can we say something otherwise about the avalanche behavior
observed in nature?

= Answer: Yes, at least in some particular systems

= Examples:
Turbidite deposition
Internet blackouts (storms)
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Turbidite deposition

= Sloping topographies erode in infrequent events (avalanches)

= Insubmarine topographies, avalanches create gravity-driven
flows on material that, after sedimentation, form sedimentary
rocks (furbidites)

= Turbidites are formed by different layers, cor'r'espondmg to
different avalanches o, S '

= Thickness of layers
is related to the size of
avalanches
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Turbidite deposition

The thickness distribution

3.0 | | of turbidite layers follows in
' O turbidites
some cases a power law
distribution
2.0 ]
P(A) ~ A

.y
(-]
L]

Characteristic exponent

log10 (no. of layers thicker than h)

0.0 |, _ ' _ -y . ’}/N2—2.4
0.0 1.0 2.0 3.0
log10 [layer thickness h (cm)]
(Rothman at al., 1995) o1
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One step back ..

= To understand the scaling of turbidite deposition we must go
one step back: consider the topography that generates the
avalanches
= Topographical surfaces are rough
Described in terms of self-affine surfaces
Characterized by means of the height-height correlation function

C(r) = (Ih(z + 1) = h(z)[);/* ~ r°

Q¢ : characteristic roughness exponent
Measured values ranging from 0.4 to 0.8 over the world
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Many topographies show in addition a average slope

This anisotropy generally induces the presence of two roughness

Tilted topographies

Induces a preferred direction (downwards)

exponents, when measuring correlation in the downwards

direction or x, or in the perpendicular direction x;
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A theory for tilted topographies

= Tilted topographies can be analytically studied using the
techniques of self-affine growing surfaces:

= Construction of a stochastic growth equation for the landscape
height h(x,t), following symmetry arguments:
Anisotropy
Preferred transport along downwards x; direction

Conservation of material
Source of

random hoise

= Lowest order equation /

oh A

(RPS & Rothman, 1998)
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RG analysis

= Applying the dynamic renormalization group in a one-loop
g-expansion

S¢ £ o
txJ_=E5 Li=1+<, e=4-d O‘IIZZ
(RPS & Rothman, 1998)
= At the physical dimension d=2
5 1 4 a«, 3
=<~ 083, T | =t =2 ~063
Ay 5 i C" 3 ) [, 8

Reasonable agreement with field measurements (o, = 0.67, o, = 0.78)
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Back to turbidites ...

Assume tubidite layers come from unstable patches of terrain
that fall from a tilted submarine landscape

Size of patches scales
scales as the surface

14¢
sl ~ 1 |

Assuming a power law distribution of patches sizes

P(s)=s""f (Ll-I-C”)
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Back to turbidites ...

Imposing the condition (s) ~ L (patches are very elongated)
1
14 ¢

Relating thickness with size A ~ s1/3  we obtain the
thickness distribution

Q/BII
>l

14

A—"\l/ - |

D7 NN\ - !
F(A) ~A vy =14

Inserting values from RG: ¥ ~ 2.3
Good agreement with field values
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Internet storms: Instabilities and congestions

Everybody has experienced short-term Internet outages:

Clicking on a link that does not respond, but responds a few seconds
later

Internet outages usually come from instabilities propagating
through the network

Configuration errors

Traffic congestions

Software bugs ...
The propagation of instabilities and congestions can lead to

failure avalanches that can collapse regions of the Internet,
blocking its access
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Internet storms: Instabilities and congestions

Empirical measurements show that Internet congestions have a

power law signatures 107 gy T
Distribution of interarrival error 108 [ -
messages (signature of congestion) 1B i _
are distributed according to a - _
power law of exponent -1 P(AY) o _ _

10° - —~
Measures of the size of congestions . F L
ore more difficult but seem to oo b L
hint towards the same power law B 3
trend 0 107°107*107%107%2107'10° 10" 10% 10° 10*

At
(Magnasco, 2000)
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One step back ..

= We can understand Internet storms by understanding the
Internet topology

= Key concept: Computer network

Set of interconnected computers that can communicate among each

other = Internet: network that

interconnects many different
computer networks on a world-
wide scale

(o))

Hardware
Access Ponl

= Main characteristic:

Heterogeneity both in design and
components

"'_-._ S
Compuber with g
Software Access Point

LEY P
& o NG Wired Ethernet
i Metwork 2
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Topology of the Internet

= The Internet belongs to a general class of complex
heterogeneous systems

Large number of diverse elementary components

Interactions between components can also diverse and can be non-
local

Number of elements 103 - 106

= New perspective for the study: representation as a graph or

network
\ Vertices

Study of the topological properties of the representative network

-)

Edges
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Representations of the Internet
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Topological analysis of networks

The most important topological characterization of a network is
the degree of the vertices

Degree k;

For large networks: Statistical

characterization by the P ( k )

degree distribution
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Scale-free Internet

= Empirical investigation shows that the Internet is a scale-free

network

Degree distribution given by a power law

P(k) ~ k™7

Degree exponent

v o~ 2.2
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Effects of an scale-free topology

A scale-free topology can have a very strong impact on the
properties of the system
The Internet is very strong against random removal of elements

On the other hand, it is very weak against the targeted removal of
the most connected elements

Random removal of elements Targeted removal of elements

a)

0.0 L— - - =S e o
0.0 0.2 0.4 0.6 0.8 1.0 ) 0.00 0.05 0.10 0.15

g (RPS & Vespignani, 2004) g
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Back to Internet storms ..

= Can the topology of Internet explain the distribution of outages?
= Simple model of the static failure of a transport network

Scale-free network

Each connection (edge) carries load ¢; at random from a uniform
distribution with average (/)

Threshold dynamics: when ¢; > C, the connection breaks and its load is
redistributed among nearest connections

The redistribution can produce an avalanche of connection failures

Kl r, oarna parvara, cuuo



Back to Internet storms ..

= When increasing (¢) , connections break and the network
becomes disconnected

= Study of the size of the largest piece of connected network as a
function of the average load

There is a phase transition at
a finite value (¢). |,
separating a disconnected
network (with no communi-
cation capabilities) from

a connected network =

= Note: We need to adjust (£).
Usual phase transition

()
KITP, Santa Barbara, 2005 (Moreno, RPS & Vespignani, 2003)
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P(s)/P(s =1)

Back to Internet storms ..

14 - 1.0
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(Moreno, RPS & Vespignani, 2003)
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Numerical study of failure
avalanches: distribution of
broken connections

Distribution size scales as a
power law with exponent -1,
for q wide range of values
of (¢)

No need of fine-tuning

Preliminary results on a
dynamic model indicate
distribution of times between
avalanches as a power law with
exponent -1
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Conclusions

= Sandpile models are not a good paradigm for possible SOC
The boundary conditions drive implicitly the system towards a
critical point
The critical point in sandpiles is a standard one (absorbing-state
phase transition), where the tuning parameter is the energy density

= Without recurring to the SOC concept, we can still say things
about avalanche behavior:

Avalanche properties can be connected to the geometrical
properties of the system (tilted landscapes and turbidites)

The very topology of a system can lead to avalanche behavior
without any fine-tuning (Internet storms)
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