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Disorder ?
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Disorder and dirt are
necessary

for our survival!

• disorder prevents our harddisk from self-erasing

• disorder makes for so diverse phenomena as quantum Hall effect,
glasses, friction, . . .
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Elastic Manifolds in Disorder
u(x)

x

• elastic manifold in a random potential
• disorder dominates over thermal fluctuations: T = 0 fixed point
• search for minimum-energy configuration
• attention: multiple minima may exist
• prototype for strongly disordered systems

What do we know?
• experiments and simulations available
• phenomenological models (droplet picture)
• mean-field approximation (replica-symmetry breaking)
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Physical Realizations
Domain-walls in magnets

(‘‘random bond’’)  

defect

‘‘random field’’

x

u(x)

Contact line of liquid Helium/water

x

 (  )u  x
Cr
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Depinning of
contact line

Eur. Phys. J. A 8 (2002) 437

Pictures courtesy of
S. Moulinet, E. Rolley
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Vortex-lattice/Bragg glass

u(x)

x

Charge Density wave

Cracks, earthquakes, directed polymer (KPZ), . . .
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Model and Observables
u   x

x

(   )

Displacement field x∈ Rd −→ u(x) ∈ RN

↑ ↑
coordinate displacement-field

Elastic energy: Hel =
∫

ddx
1
2
[∇u(x)]2

Disorder energy HDO =
∫

ddxV(x,u(x))

with correlations (N = 1) V(x,u)V(x′,u′) = δ d(x−x′)R(u−u′)

Observables
roughness ζ [u(x)−u(x′)]2 ∼ |x−x′|2ζ

full probability-distribution function
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The problem in the treatment of disorder: dimensional
reduction

“Theorem” (Efetov, Larkin 1977): A d-dimensional disordered system
at zero temperature (T = 0) is equivalent to all orders in perturbation
theory to a pure system in d− 2 dimensions at finite temperature.
(“Holds” under quite general assumptions.)

Example: Elastic manifolds in disorder
The thermal 2-point function becomes〈

[u(x)−u(0)]2
〉
∼ |x|2−d −→ [u(x)−u(0)]2 ∼ x4−d

roughness exponent

ζ =
4−d

2

Counter-example:
3d disordered Ising-model at T = 0 is ordered; in contrast to the 1d
Ising-model without disorder at T > 0.
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The Larkin-length

L

Be the disorder force Fx gaussian, with correlation length r. Typical
energy due to disorder on segment

EDO = f̄

(
L
r

)d/2

Elastic energy Eel = cLd−2

Balance energies EDO = Eel at L = Lc (Larkin-length)

Lc =
(

c2

f̄ 2
rd

) 1
4−d

d < 4: Membrane pinned by disorder on scales larger than the Lc:

d = 4 is upper critical dimension
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Functional renormalization group (FRG)
(D. Fisher 1986)

H [u] =
∫

x

1
2T

n

∑
a=1

[∇ua(x)]
2 − 1

2T2

n

∑
a,b=1

R(ua(x)−ub(x))

Functional renormalization group equation (FRG) for the disorder
correlator R(u) at 1-loop order:

∂`R(u)=(ε−4ζ )R(u)+ζuR′(u)+
1
2
R′′(u)2−R′′(u)R′′(0)

Solution for force-force correlator −R′′(u):

renormalization

uu

−R’’(u) −R’’(u)

Cusp: R′′′′(0) = ∞ appears after finite RG-time (at Larkin-length)

R′′L>Lc
(0) 6= dim.red.

eventhough formally
∂`R′′(0) = (ε−2ζ )R′′(0)
(≡ dim.red.)


Renormalization of
whole function overcomes
dimensional reduction
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Why is a cusp necessary?
. . . suppose I want to integrate out a single degree of freedom. . .
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Isotropic Depinning

• roughness [u(x)−u(0)]2 ∼ |x|2ζ

• velocity-force-characteristics, pinning

f

v

fc

v∼ | f − fc|β

• dynamic exponent z t ∼ xz

• correlation length ξ ξ ∼ | f − fc|−ν

• exponent relations β = ν(z−ζ ) ν =
1

2−ζ
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Different drivings. . .

f

v

fc

f = fixed

v = fixed

Drive with fixed f (mode 1): tune f to fc for scale-invariance

Drive with velocity f (mode 1): tune v to 0 for scale-invariance

Avalanches are observed in mode 2.
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RG-treatment, 1loop
Nattermann et al., Narayan & Fisher, 1992
• same RG-equation as in the statics, even though physics should be

different: Not a consistent theory
• claim: ζ = ε

3 is exact to all orders;
in contradiction with experiments and simulations

2 loop
PRL 86 (2001) 1785, PRB 66 (2002) 174201

• Membrane only jumps ahead (T = 0):

t > t ′ =⇒ u(x, t)≥ u(x, t ′)
• renders perturbation theory unique

∂`R(u)= (ε−4ζ )R(u)+ζuR′(u)+
1
2
R′′(u)2−R′′(u)R′′(0)

+
1
2

[R′′(u)−R′′(0)]R′′′(u)2 +
1
2

R′′′(0+)2R′′(u)

• results for RF: ζ = ε

3 (1+0.14331ε + . . .)
z= 2− 2

9 ε−0.04321ε2+ . . .
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Depinning
Rosso, Krauth, et al.
(2001)

d ε ε2 estimate simulation

3 0.33 0.38 0.38±0.02 0.34±0.01
ζ 2 0.67 0.86 0.82±0.1 0.75±0.02

1 1.00 1.43 1.2±0.2 1.25±0.01

2 3 4 dc 6
d

0.0

0.2

0.4

0.6

0.8

1.0

β 

2-loop RG
Nowak and Usadel

2 3 4 dc 6
1

2

3

4

5

ψ

d

Domain-wall in RF-magnet
Roters et al. PRE 60 (1999) 5202

Depinning, d = 1,
long-range elasticity

ε ε2 estimate simulation

ζ 0.33 0.47 0.47±0.1 0.39±0.002
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Depinning of contact line – long-range elasticity

y θ

water (bulk)

substrate (dry)

x

water−surface

 h(x)y’,

Elastic Energy of liquid air interface

ELA[z] ∼ area of liquid air interface

It can be written as a function of height h(x) at boundary

ELA[h] =
c1

2

∫
q
|q|hqh−q+

λ

2

∫
q,k

[|q||k|+qk]hkhqh−q−k +O(h4)
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More . . . long-range elasticity

ELA[h] =
c1

2

∫
q
|q|hqh−q+

λ

2

∫
q,k

[|q||k|+qk]hkhqh−q−k +O(h4)

Linear elasticity leads to roughness ζ ≈ 0.39 (numerics + FRG)
Experiments on contact line: ζ ≈ 0.5

Non-linear terms can not be neglected.

Non-linear terms become relevant under FRG.

This is also relevant to earthquakes, and cracks.

For earthquakes, the elasticity is like above but the dimension is
d = 2. The system is in its “critical dimension”. Instead of power-laws

there are logarithimic dependences on systems size etc.
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Avalanches
FRG knows about two independent renormalizations: roughness ζ

and dynamics exponent z. All other exponents should be related to
these by scaling relations, e.g. avalanche-size distribution

P(s) = s−τ fs

(
s
s0

)
, τ = 2

[
1− 1

d+ζ

]
Avalanche-time distribution

P(t) = t−α ft

(
t
t0

)
, α =

d+ζ +z−2
z
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Probability distribution function
for the interface width
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analytic result
simulation, L = 256

A. Rosso, W. Krauth, P. Le Doussal,
J. Vannimenus, K.J. Wiese
PRE 68 (2003) 036128

w2 :=
1

Vol

∫
x
(u(x)−〈u〉)2

Probability distribution function

P(w2) = Φ
(

w2

〈w2〉

)
Φ(z) is universal, depending only on ζ .
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Random Field Systems
Expansion about the ordered phase, i.e. with constraint |~n|= 1.

H [~n] =
∫

ddx

[
1

2T ∑
a

(∇~na)2− 1
T ∑

a

~M~na−
1

2T2 ∑
ab

R̂(~na~nb)
]

∂`R(φ) = εR(φ)+
1
2
R′′(φ)2−R′′(0)R′′(φ)

+(N−2)
[

1
2

R′(φ)2

sin2
φ
−cotφR′(φ)R′′(0)

]
+2 loop terms

dd dd 444 d lc

F F F

D
D

D

D D D

N = N

QLRO

cN > N c N < N c
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Functional RG expansion around Nc

R(φ) = gRc(φ)+g2δR(φ) , g = f (Nc−N)

-0.1 0.1 0.2 0.3

-0.2

0.2

0.4

0.6

d−4
(N−Nc)2

f

Nc = 2.8347for Random Field
Nc = 9.441 for Random Anisotropy
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Summary

• New analytical method to treat strongly disordered systems
• higher order calculations: cumbersome, but under control

• exact solution of the large-N limit, precise relation to RSB

• cusp analytically under control

Outlook

• most promising method to obtain strong-coupling behaviour of
strongly disordered systems as e.g. KPZ beyond mean-field.
• 1/N-expansion: give quantitative results beyond mean-field.

• random field . . .

• biological problems like RNA-folding. . .

• quantum problems ?
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