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Disorder ?







Disorder and dirt are
necessary
for our survival!

e disorder prevents our harddisk from self-erasing

e disorder makes for so diverse phenomena as quantum Hall effect,
glasses, friction, ...



Elastic Manifolds in Disorder

pUuC)”

¢ elastic manifold in a random potential

e disorder dominates over thermal fluctuations: T = 0 fixed point
e search for minimum-energy configuration

e attention: multiple minima may exist

e prototype for strongly disordered systems

What do we know?
e experiments and simulations available
e phenomenological models (droplet picture)
e mean-field approximation (replica-symmetry breaking)



Physical Realizations
Domain-walls in magnets
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Contact line of liquid Helium/water
u(x)




L
il !; |

Temps (ms) ‘
B LI

I
!

|
|
|
§
|
|
|
13k

Depinning of
contact line
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Pictures courtesy of
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Vortex-lattice/Bragg glass
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Charge Density wave

Cracks, earthquakes, directed polymer (KP2), ...



Model and Observables

u (x) \
Displacement field xeRY — u(x) e RN
1 1
coordinate displacement-field
Elastic energy: ) = /d“'x%[mu(x)]2
Disorder energy Ao = /dde(x,u(x))

with correlations (N = 1) V (X, UV (X, u) = §4(x—x)R(u—U)

Observables

roughness § u(x) — u(x’)]2 ~ |x— X%

full probability-distribution function



The problem in the treatment of disorder: dimensional
reduction

“Theorem” (Efetov, Larkin 1977): A d-dimensional disordered system
at zero temperature (T = 0) is equivalent to all orders in perturbation
theory to a pure system in d — 2 dimensions at finite temperature.
(“Holds” under quite general assumptions.)

Example: Elastic manifolds in disorder
The thermal 2-point function becomes

(U9 =) ~ X2 —  [u(x) —u(0)]® ~ X+

roughness exponent
;A

2
Counter-example:

3d disordered Ising-model at T = 0 is ordered; in contrast to the 1d
Ising-model without disorder at T > 0.
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The Larkin-length

Be the disorder force K, gaussian, with correlation length r. Typical
energy due to disorder on segment

N )2
épo =1 (%)

Elastic energy &y =cld?

Balance energies &po = &, at L = L¢ (Larkin-length)

1
CZ d 4—d

d < 4. Membrane pinned by disorder on scales larger than the L.
d =4 is upper critical dimension
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Functional renormalization group (FRG)
(D. Fisher 1986) 1 n

AU = / o7 3 [0ax) 2T2 ; R(Ua(X) — Up(X))

Functional renormalization group equation (FRG) for the disorder
correlator R(u) at 1-loop order:

AR(U) = (€~ 40)R(U) + CUR (1) + 5R'(1)*~R'(U)R'(0)

Solution for force-force correlator —R"(u):
—R"’(u) \ —R”’(u) \

renormalization
=
= =
u U

Cusp: R"(0) = o appears after finite RG-time (at Larkin-length)
R'...(0) # dim.red.

Renormalization of
eventhough formally hole functi
IR'(0) = (£ — 20 )R(0) whole function overcomes

(= dim.red.) dimensional reduction
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Why IS a cusp necessary?
.. Suppose | want to integrate out a single degree of freedom. ..
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Isotropic Depinning

e roughness

[u(x) — u(0)]* ~ |x%

¢ velocity-force-characteristics, pinning

e dynamic exponent z

e correlation length &

e exponent relations

t ~ X?
&~ |f—1c|™Y
B=v(z—¢)
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Different drivings. ..

VA

=
f

> f = fixed

= V = fixed

Drive with fixed f (mode 1): tune f to f; for scale-invariance
Drive with velocity f (mode 1): tune v to O for scale-invariance
Avalanches are observed in mode 2.
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RG-treatment, lloop

Nattermann et al., Narayan & Fisher, 1992

e same RG-equation as in the statics, even though physics should be
different. Not a consistent theory

e claim: { = 3 is exact to all orders;
In contradiction with experiments and simulations

2 loop
PRL 86 (2001) 1785, PRB 66 (2002) 174201

e Membrane only jumps ahead (T = 0):
t >t — u(x,t) > u(x,t)
e renders perturbation theory unique .
JR(u) = (¢ —4{)R(u) + CuR(u) + éﬁ’(u)z—R”(u) R'(0)

LRI - ROIRW? + 2RO R (W

£(140.1433& +...)
2—2e—0.0432% 2+ ...

e results for RF: 4
Z
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Depinning of contact line — long-range elasticity

substrate (dry)
Y, h(x)

-
-

water—surface

Elastic Energy of liquid air interface
E;A|Z] ~ area of liquid air interface

It can be written as a function of height h(x) at boundary

C A
Eualh) =5 [ lalghoa+5 | [allki+aKighq c+-O(h)
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More ...long-range elasticity

C A
Eualh] =5 [ lalnghoa+5 | [allki+aKidgh_q i +-O(h)

Linear elasticity leads to roughness ¢ = 0.39 (numerics + FRG)
Experiments on contact line: =~ 0.5

Non-linear terms can not be neglected.
Non-linear terms become relevant under FRG.
This Is also relevant to earthguakes, and cracks.

For earthquakes, the elasticity is like above but the dimension is
d = 2. The system is in its “critical dimension”. Instead of power-laws
there are logarithimic dependences on systems size etc.
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Avalanches

FRG knows about two independent renormalizations: roughness {
and dynamics exponent z. All other exponents should be related to

these by scaling relations, e.g. avalanche-size distribution

P(s) = ffs(s—sc) | TzZ[l—ﬁ]

Avalanche-time distribution

to
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Probability distribution function
for the interface width
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analytic result —
simulation, L =256

J. Vannimenus, K.J. Wiese

PRE 68 (2003) 036128
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Probability distribution function

g@(vxﬁ):cb(
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%) ®(z) is universal, depending only on (.

A. Rosso, W. Krauth, P. Le Doussal,

20



Random Field Systems
Expansion about the ordered phase, i.e. with constraint || = 1.

/dd [ZTZ ) ﬁ—ﬁ%Rﬁﬁb]

IR() = eR(9) + SR (9)*~ R(OR'(9)
+(N-2) Bzgfp —cotqu(qb)R”(O)] + 2 loop terms

N> N N=N¢ N< N




N. = 2.8347for Random Field
N. = 9.441 for Random Anisotropy

Functional RG expansion around N
R(¢) =9gRe(9) +g°6R(¢) ,  g=f(Nc—N)
f .
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Summary

e New analytical method to treat strongly disordered systems
e higher order calculations: cumbersome, but under control

e exact solution of the large-N limit, precise relation to RSB
e cusp analytically under control

Outlook

e Most promising method to obtain strong-coupling behaviour of
strongly disordered systems as e.g. KPZ beyond mean-field.
e 1/N-expansion: give quantitative results beyond mean-field.

e random field . ..
e biological problems like RNA-folding. ..
e quantum problems ?
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