Depinning of Domain Walls, Contact Lines...and Cracks?

Kay Wiese

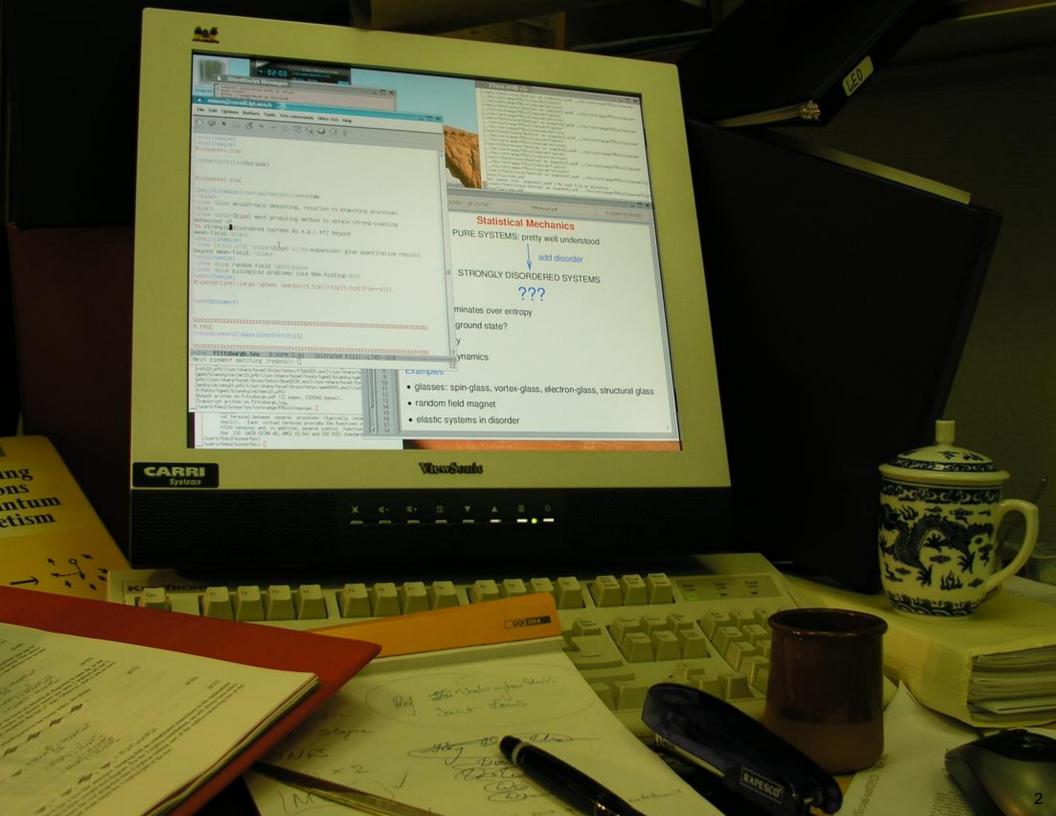
LPT, ENS, Paris with Pierre Le Doussal

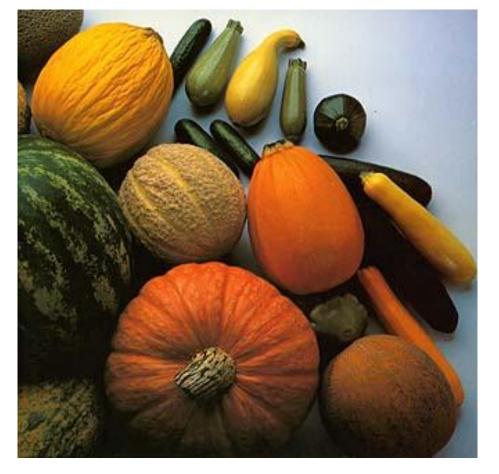
KITP, November 23, 2005

References: PRL 86 (2001) 1785: 2 loop cond-mat/0302322 : intro + review

http://www.phys.ens.fr/~wiese/

Disorder ?

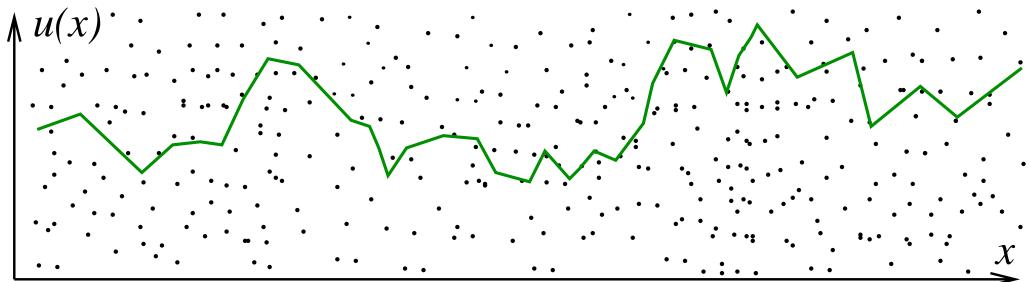




Disorder and dirt are necessary for our survival!

- disorder prevents our harddisk from self-erasing
- disorder makes for so diverse phenomena as quantum Hall effect, glasses, friction, ...

Elastic Manifolds in Disorder



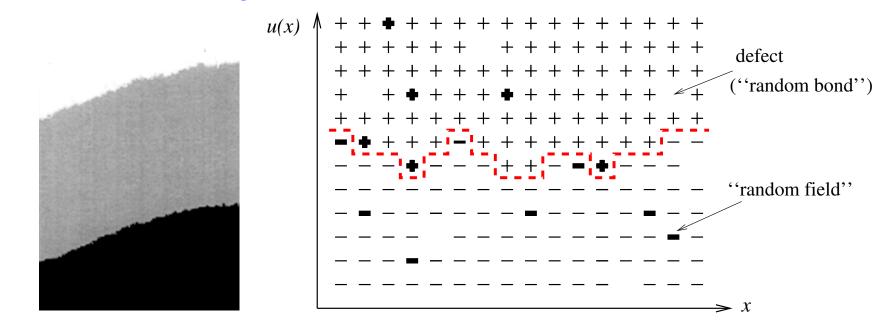
- elastic manifold in a random potential
- disorder dominates over thermal fluctuations: T = 0 fixed point
- search for minimum-energy configuration
- attention: multiple minima may exist
- prototype for strongly disordered systems

What do we know?

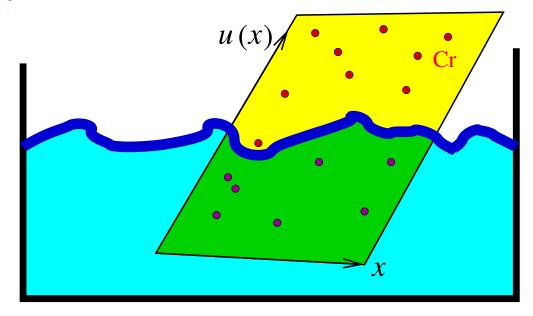
- experiments and simulations available
- phenomenological models (droplet picture)
- mean-field approximation (replica-symmetry breaking)

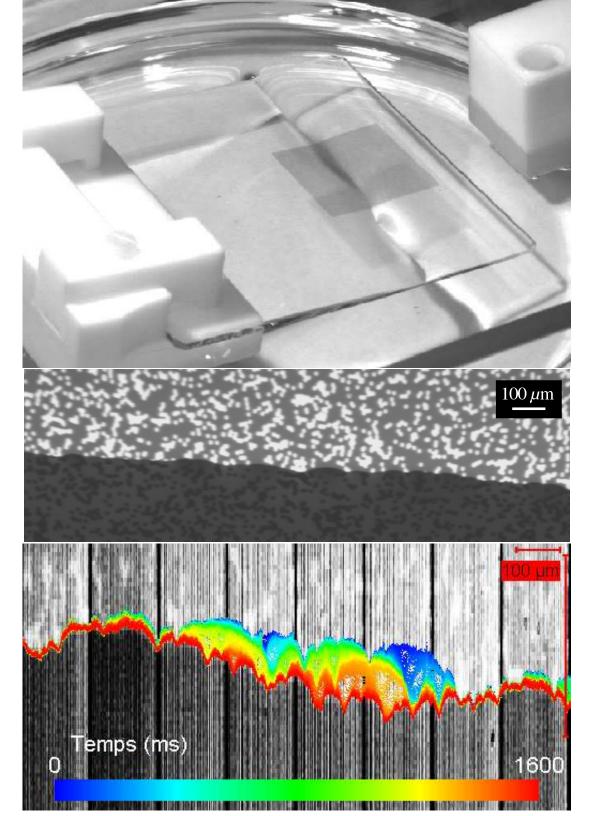
Physical Realizations

Domain-walls in magnets



Contact line of liquid Helium/water



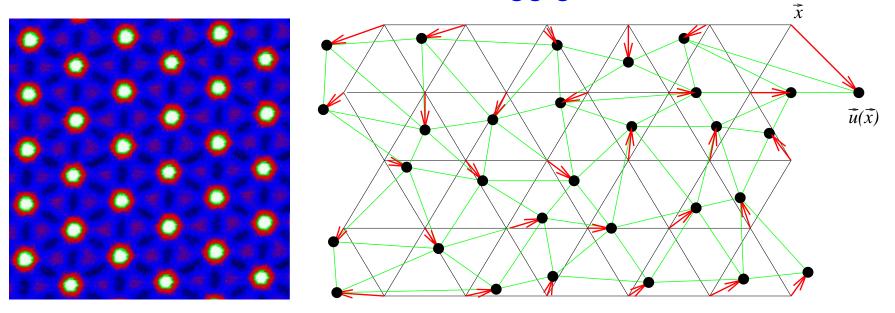


Depinning of contact line

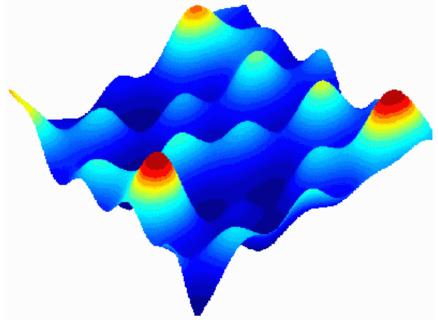
Eur. Phys. J. A 8 (2002) 437

Pictures courtesy of S. Moulinet, E. Rolley

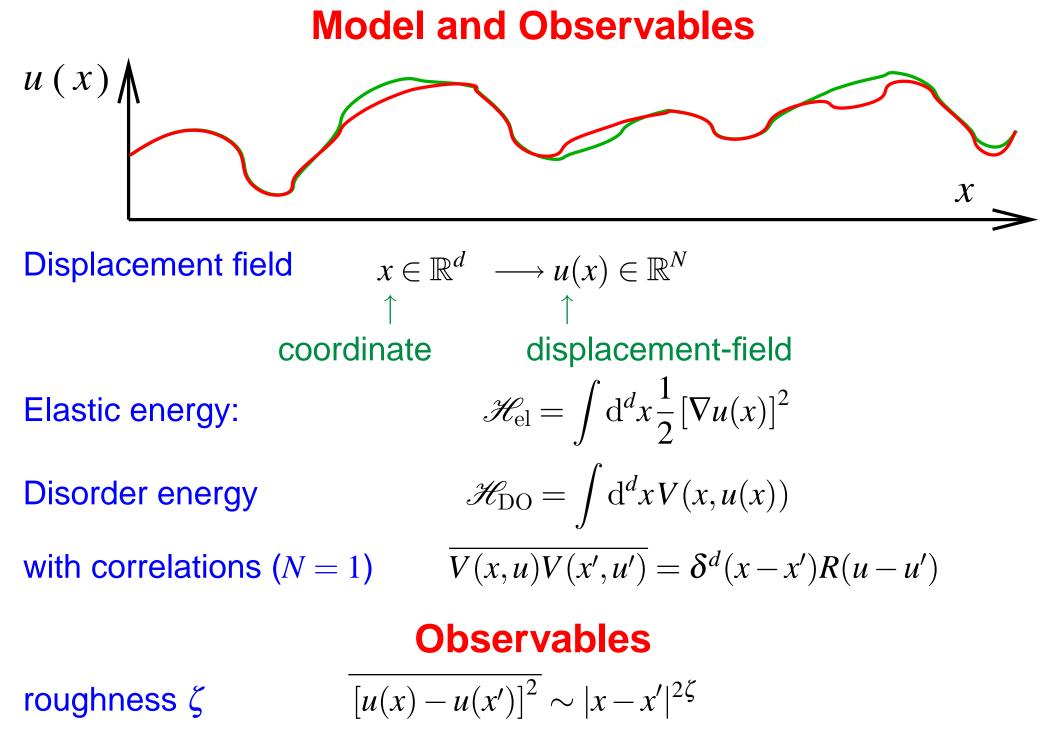
Vortex-lattice/Bragg glass



Charge Density wave



Cracks, earthquakes, directed polymer (KPZ), ...



full probability-distribution function

The problem in the treatment of disorder: dimensional reduction

"Theorem" (Efetov, Larkin 1977): A *d*-dimensional disordered system at zero temperature (T = 0) is equivalent to all orders in perturbation theory to a pure system in d - 2 dimensions at finite temperature. ("Holds" under quite general assumptions.)

Example: Elastic manifolds in disorder

The thermal 2-point function becomes

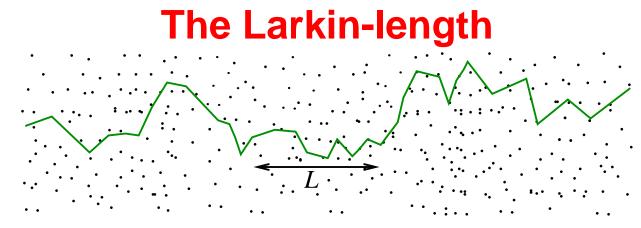
$$\left\langle \left[u(x) - u(0) \right]^2 \right\rangle \sim |x|^{2-d} \longrightarrow \overline{\left[u(x) - u(0) \right]^2} \sim x^{4-d}$$

roughness exponent

$$\zeta = \frac{4-d}{2}$$

Counter-example:

3d disordered Ising-model at T = 0 is ordered; in contrast to the 1d Ising-model without disorder at T > 0.



Be the disorder force F_x gaussian, with correlation length *r*. Typical energy due to disorder on segment

$$\mathscr{E}_{\rm DO} = \bar{f} \left(\frac{L}{r}\right)^{d/2}$$

Elastic energy

$$\mathscr{E}_{\rm el} = c L^{d-2}$$

Balance energies $\mathscr{E}_{\mathrm{DO}} = \mathscr{E}_{\mathrm{el}}$ at $L = L_c$ (Larkin-length)

$$L_c = \left(\frac{c^2}{\bar{f}^2}r^d\right)^{\frac{1}{4-c}}$$

d < 4: Membrane pinned by disorder on scales larger than the L_c : d = 4 is upper critical dimension

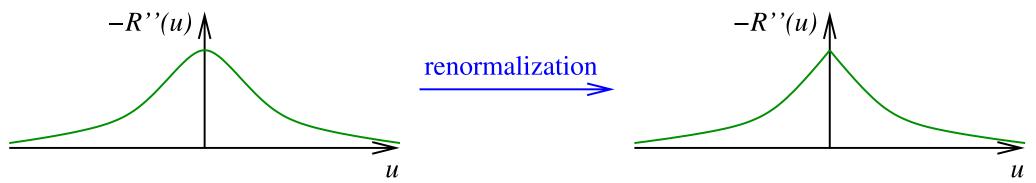
Functional renormalization group (FRG)

(D. Fisher 1986) $\mathscr{H}[u] = \int_{x} \frac{1}{2T} \sum_{a=1}^{n} \left[\nabla u_{a}(x) \right]^{2} - \frac{1}{2T^{2}} \sum_{a,b=1}^{n} R(u_{a}(x) - u_{b}(x))$

Functional renormalization group equation (FRG) for the disorder correlator R(u) at 1-loop order:

$$\partial_{\ell}R(u) = (\varepsilon - 4\zeta)R(u) + \zeta uR'(u) + \frac{1}{2}R''(u)^2 - R''(u)R''(0)$$

Solution for force-force correlator -R''(u):



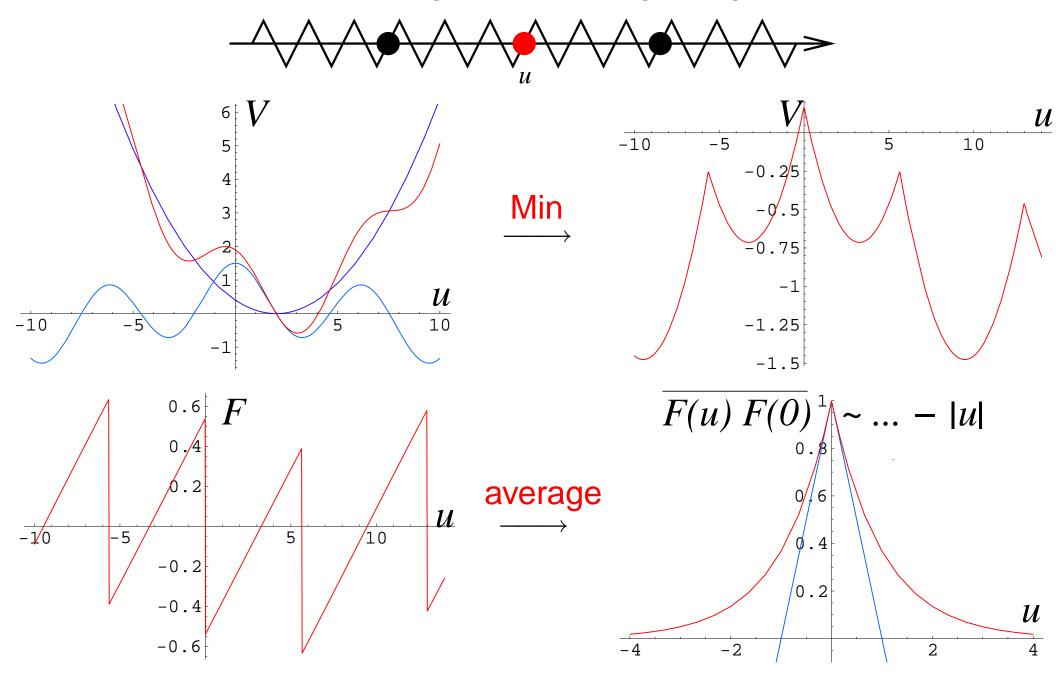
Cusp: $R''''(0) = \infty$ appears after finite RG-time (at Larkin-length)

 $R_{L>L_c}^{\prime\prime}(0) \neq \text{dim.red.}$ eventhough formally $\partial_{\ell}R^{\prime\prime}(0) = (\varepsilon - 2\zeta)R^{\prime\prime}(0)$ ($\equiv \text{dim.red.}$)

Renormalization of whole function overcomes dimensional reduction

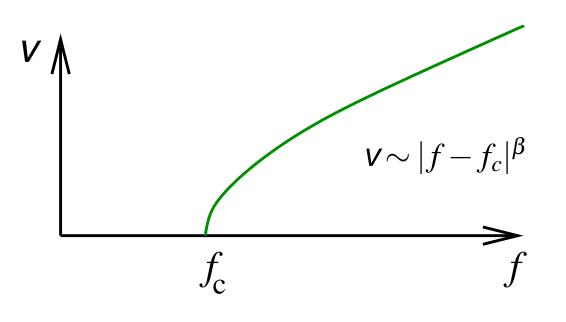
Why is a cusp necessary?

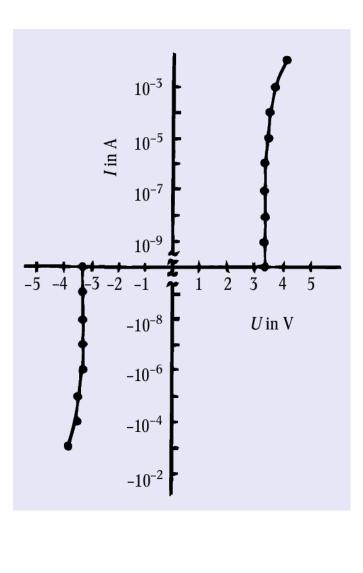
... suppose I want to integrate out a single degree of freedom...



Isotropic Depinning

- roughness $\overline{\left[u(x)-u(0)\right]^2} \sim |x|^{2\zeta}$
- velocity-force-characteristics, pinning



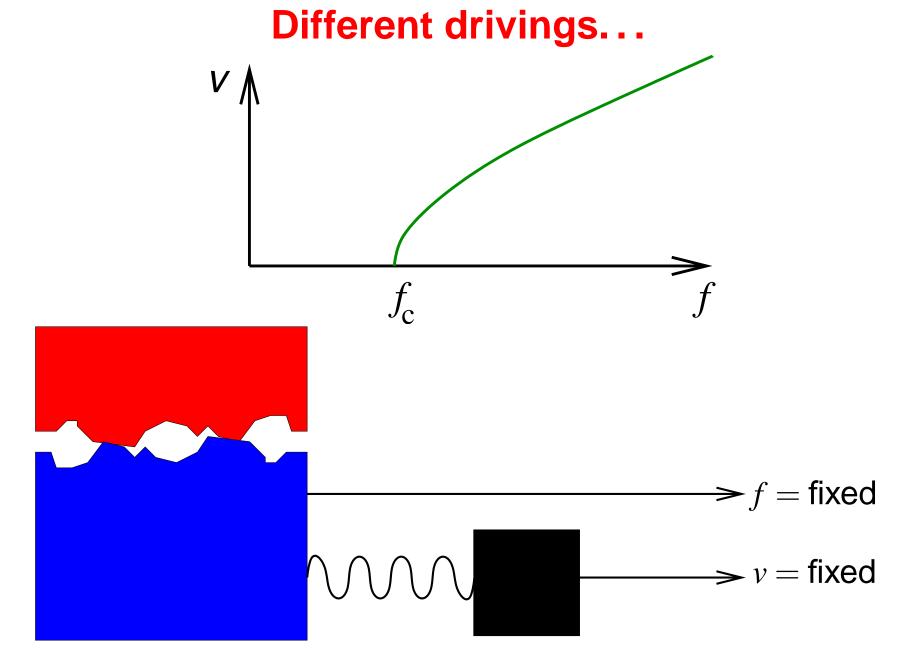


- dynamic exponent z
- correlation length ξ
- exponent relations

 $t \sim x^z$

 $\boldsymbol{\xi} \sim |f - f_c|^{-\nu}$

 $\beta = v(z - \zeta) \qquad \qquad v = \frac{1}{2 - \zeta}$



Drive with fixed f (mode 1): tune f to f_c for scale-invariance Drive with velocity f (mode 1): tune v to 0 for scale-invariance Avalanches are observed in mode 2.

RG-treatment, 1loop

Nattermann et al., Narayan & Fisher, 1992

- same RG-equation as in the statics, even though physics should be different: Not a consistent theory
- claim: $\zeta = \frac{\varepsilon}{3}$ is exact to all orders; in contradiction with experiments and simulations **2** loop

PRL 86 (2001) 1785, PRB 66 (2002) 174201

• Membrane only jumps ahead (T = 0):

$$t > t' \implies u(x,t) \ge u(x,t')$$

1

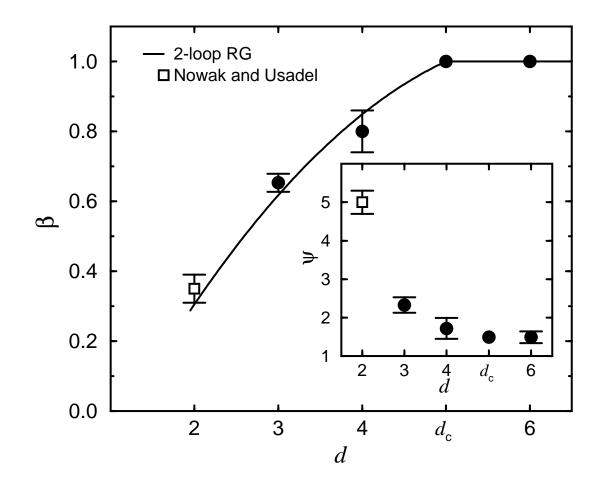
• renders perturbation theory unique

$$\partial_{\ell} R(u) = (\varepsilon - 4\zeta) R(u) + \zeta u R'(u) + \frac{1}{2} R''(u)^2 - R''(u) R''(0) + \frac{1}{2} [R''(u) - R''(0)] R'''(u)^2 + \frac{1}{2} R'''(0^+)^2 R''(u)$$

• results for RF: $\zeta = \frac{\varepsilon}{3} (1 + 0.14331\varepsilon + ...)$ $z = 2 - \frac{2}{9}\varepsilon - 0.04321\varepsilon^2 + ...$

Depinning Rosso, Krauth, et al. (2001)

	d	Е	ϵ^2	estimate	simulation
	3	0.33	0.38	0.38±0.02	0.34±0.01
ζ	2	0.67	0.86	0.82±0.1	0.75±0.02
	1	1.00	1.43	1.2±0.2	1.25±0.01

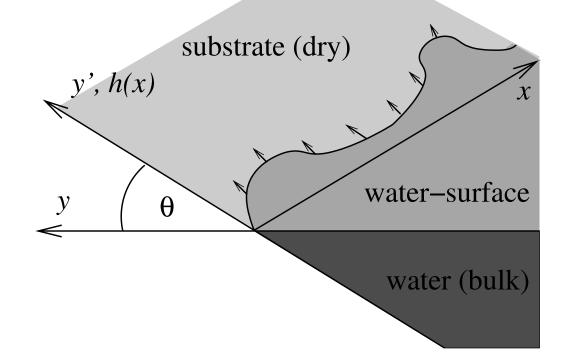


Domain-wall in RF-magnet Roters et al. PRE 60 (1999) 5202

Depinning, d = 1, **long-range elasticity**

	E	ϵ^2	estimate	simulation
ζ	0.33	0.47	0.47±0.1	0.39±0.002

Depinning of contact line – long-range elasticity



Elastic Energy of liquid air interface

 $E_{\rm LA}[z] \sim$ area of liquid air interface

It can be written as a function of height h(x) at boundary

$$E_{\rm LA}[h] = \frac{c_1}{2} \int_q |q| h_q h_{-q} + \frac{\lambda}{2} \int_{q,k} [|q||k| + qk] h_k h_q h_{-q-k} + O(h^4)$$

More ... long-range elasticity

$$E_{\rm LA}[h] = \frac{c_1}{2} \int_q |q| h_q h_{-q} + \frac{\lambda}{2} \int_{q,k} [|q||k| + qk] h_k h_q h_{-q-k} + O(h^4)$$

Linear elasticity leads to roughness $\zeta \approx 0.39$ (numerics + FRG) Experiments on contact line: $\zeta \approx 0.5$

Non-linear terms can not be neglected.

Non-linear terms become relevant under FRG.

This is also relevant to earthquakes, and cracks.

For earthquakes, the elasticity is like above but the dimension is d = 2. The system is in its "critical dimension". Instead of power-laws there are logarithmic dependences on systems size etc.

Avalanches

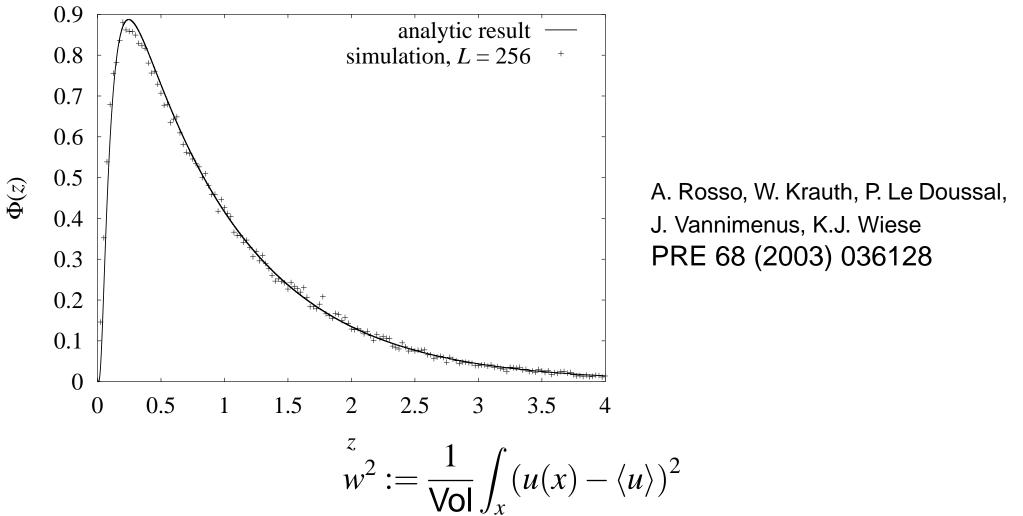
FRG knows about two independent renormalizations: roughness ζ and dynamics exponent *z*. All other exponents should be related to these by scaling relations, e.g. avalanche-size distribution

$$\mathscr{P}(s) = s^{-\tau} f_s\left(\frac{s}{s_0}\right) , \qquad \tau = 2\left[1 - \frac{1}{d+\zeta}\right]$$

Avalanche-time distribution

$$\mathscr{P}(t) = t^{-\alpha} f_t\left(\frac{t}{t_0}\right), \qquad \alpha = \frac{d+\zeta+z-2}{z}$$

Probability distribution function for the interface width



Probability distribution function

$$\mathscr{P}(w^2) = \Phi\left(\frac{w^2}{\langle w^2 \rangle}\right)$$

 $\Phi(z)$ is universal, depending only on ζ .

Random Field Systems

Expansion about the ordered phase, i.e. with constraint $|\vec{n}| = 1$.

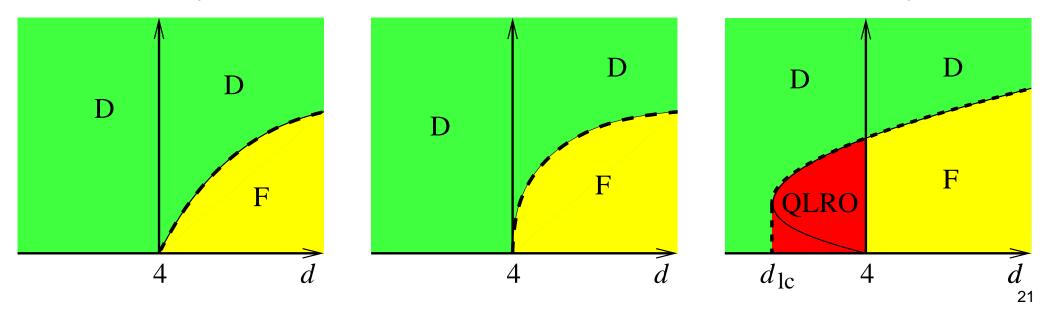
$$\mathscr{H}[\vec{n}] = \int \mathrm{d}^d x \left[\frac{1}{2T} \sum_a (\nabla \vec{n}_a)^2 - \frac{1}{T} \sum_a \vec{M} \vec{n}_a - \frac{1}{2T^2} \sum_{ab} \hat{R}(\vec{n}_a \vec{n}_b) \right]$$

$$\begin{aligned} \partial_{\ell} R(\phi) &= \varepsilon R(\phi) + \frac{1}{2} R''(\phi)^2 - R''(0) R''(\phi) \\ &+ (N-2) \left[\frac{1}{2} \frac{R'(\phi)^2}{\sin^2 \phi} - \cot \phi R'(\phi) R''(0) \right] + 2 \text{ loop terms} \end{aligned}$$

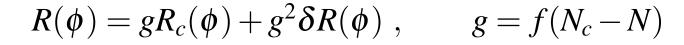
 $N > N_{\rm c}$

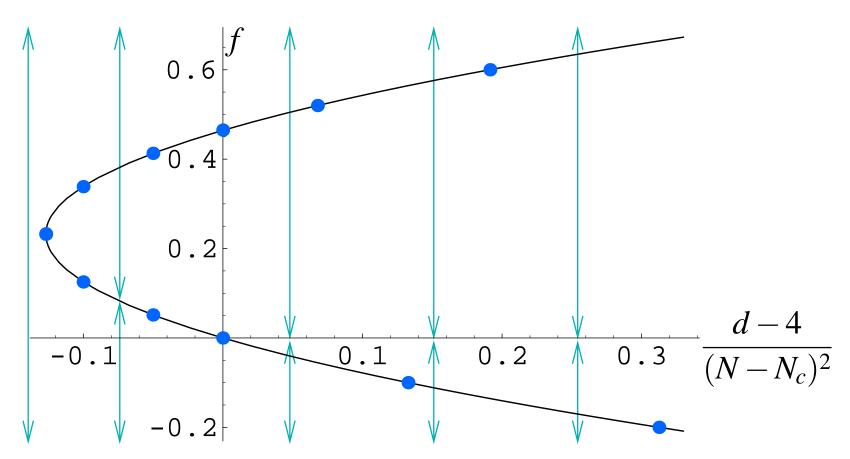
$$N = N_{\rm c}$$

 $N < N_{\rm c}$



Functional RG expansion around N_c





 $N_c = 2.8347$ for Random Field $N_c = 9.441$ for Random Anisotropy

Summary

- New analytical method to treat strongly disordered systems
 - higher order calculations: cumbersome, but under control
 - exact solution of the large-*N* limit, precise relation to RSB
 - cusp analytically under control

Outlook

- most promising method to obtain strong-coupling behaviour of strongly disordered systems as e.g. KPZ beyond mean-field.
 - 1/N-expansion: give quantitative results beyond mean-field.
- random field . . .
- biological problems like RNA-folding...
- quantum problems ?