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Evolutionary Dynamics @ 1GC:

» How do populations adapt to challenging environments?
E.g., how does drug resistance evolve?

» Which processes drive speciation & diversification?

» What is the role of interactions in evolution?
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Evolutionary Dynamics @ 1GC:
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» What is the role of interactions in evolution?

What we do

» Study evolutionary processes using simple models .
» Evaluate these models using empirical and simulated data
» Use modeling to inform experimental design a priori
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» How do mutational effects change dependent on the genetic
background? (I.e., what is the role of epistasis?)

» What is the shape of the fitness landscape?



UNDERSTANDING EVOLUTION THROUGH FITNESS LANDSCAPES
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Local fitness landscape of the green
fluorescent protein

Comprehensive experimental fithess landscape
and evolutionary network for small RNA

Genotype to Phenotype Mapping and the Fitness
Landscape of the E. coli lac Promoter

Biophysical principles predict fitness landscapes of
drug resistance

Mutational and fitness landscapes of an RNA virus
revealed through population sequencing

In-vivo mutation rates and fithess landscape of HIV-1

The fitness landscape of a tRNA gene
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» fitness landscapes yield information on the
predictability and repeatability of evolution

> it becomes increasingly simple to measure
empirical fitness landscapes

» accumulating data on gene networks and
pathways

But:
> enormous complexity

» unclear whether there is predictive
potential when combining theory and data

E.g.: Can we predict costs of anti-
microbial resistance across environments?
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THE EXPERIMENTAL APPROACH: DEEP MUTATIONAL SCANNING

» Systematic high-throughout sampling of hundreds |
of chosen mutations (including those that are
strongly deleterious)

» Bulk competitions ensure identical conditions for
all mutants

Dan Bolon

» Genetic background is precisely controlled
(minimized potential for secondary mutations)
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Point-mutant

library Analyze mutant abuqdance /) .
by deep sequencing Jeff Jensen

Hietpas, Jensen & Bolon, PNAS, 2011




THE EXPERIMENTAL APPROACH: DEEP MUTATIONAL SCANNING

» Systematic high-throughout sampling of hundreds
of chosen mutations (including those that are
strongly deleterious)

Deep mutational scanning results in a
(almost “evolution-free”) snapshot of the fithess landscape.

» Genetic background is precisely controlled
(minimized potential for secondary mutations)

Yeast \Y\Y \V
Point-mutant

library Analyze mutant abun.dance i
by deep sequencing Jeff Jensen

Hietpas, Jensen & Bolon, PNAS, 2011

Ryan Hietpas




DEEP MUTATIONAL SCANNING FROM A MODELER’S POINT OF VIEW

» Exponential growth of hundreds
of mutants, each with its own
growth rate/selection coefficient

» Sequencing corresponds to
multinomial sampling of
mutants independently at each
sampling time
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DEEP MUTATIONAL SCANNING FROM A MODELER’S POINT OF VIEW

» Exponential growth of hundreds
of mutants, each with its own

growth rate/selection coefficient g
» Sequencing corresponds to <
multinomial sampling of o ool
o - Sampling
mutants independently at each - points

M2

sampling time
Time

» What is the attainable experimental accuracy?

» How do experimental details (number and timing of samples,
sequencing coverage, number of mutants, etc.) affect the
outcome?



A statistical guide to the design of deep mutational
scanning experiments

Sebastian Matuszewski™ '-5:55, Marcel E. Hildebrandt* 5, Ana-Hermina Ghenu?, Jeffrey D. Jensen™ ' and Claudia Bank* /3581

*School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, *Swiss Institute of Bioinformatics (SIB), Lausanne,
Switzerland, FInstituto Gulbenkian de Ciéncia, Oeiras, Portugal, Sequal contribution, $5co-corresponding author

> optimize experimental setup
for deep mutational
scanning approaches

Statistical equations for experimental design of
high-throughput bulk competition experiments

This page allows you to improve the expetimental desipn of your high-throughput bulz competition experiments
ky Jooking at the “csults fzom the ecuatons of Matuszewsk ot 2. 1€ for values taat are relevant to your
propossd expesimert(s). The publicaton czn be found here: [imsert [nk]
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WHAT WE DID SO FAR

Engineered mutations from a 9 aa region from Hsp90
(aa positions 582-590) in Saccharomyces cerevisiae

Compare DFEs across 4 environments - high costs of
adaptation Hietpas™, Bank™ et al., 2013, Evolution

MCMC method to estimate selection coefficients, and
DFEs across 6 environments - heavy-tailed DFE for

most challenging environment Bank et al., 2014, Genetics
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Guide to experimental design of deep mutational
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Complete fitness landscape of 640 combinations of
mutations Bank*, Matuszewski* et al., 2016, PNAS
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> relatively “unbiased" selection of mutations

» multi-allelic fitness landscape
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3 QUESTIONS

» Do single step mutations predict the way to the global
optimum?

» Will adaptation take the population to the global optimum?

» Can we infer an unknown part of the fitness landscape?
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A PICTURE OF THE WHOLE LANDSCAPE
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Focal landscapes:

1) leading to global optimum ;

2) best 4 mutations

3) “worst” 4 mutations

1 - DO SINGLE STEP
MUTATIONS PREDICT THE
WAY TO THE GLOBAL
OPTIMUM?
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Strong positive and
negative epistasis
in the landscape.
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LANDSCAPE STATISTICS INDEPENDENT OF REFERENCE
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Ferretti L, Schmiegelt B, Weinreich D, Yamauchi A, Kobayashi Y, Tajima F & Achaz G
(2016) Measuring epistasis in fitness landscapes: The correlation of fitness effects of
mutations. Journal of Theoretical Biology 396:132—143
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HOW CAN WE MEASURE FITNESS LANDSCAPES AND
WHAT CAN WE LEARN FROM THIS EXERCISE?
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HOW CAN WE MEASURE FITNESS LANDSCAPES AND
WHAT CAN WE LEARN FROM THIS EXERCISE?
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3 - CAN WE INFER AN UNKNOWN PART OF THE LANDSCAPE?

"Theoretical fitness landscapes
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V O\

0 1 2 3 4 5

Epistasis measure gammag with increasing Hamming distance d



3 - CAN WE INFER AN UNKNOWN PART OF THE LANDSCAPE?

1.0F T T T T T
05 ‘

— 588P

7 e Global |
"Theoretical fitness landscapes

T i \/ d la Ferettiet al., JTB, 2016 1 ~°°F
i ggbox

v \ . Drop one mutation
-1.0F, 1 1 1.0k 1 1 1 1 =
0 1 2 3 4 5 0 1 2 3 4 5
d

Epistasis measure gammag with increasing Hamming distance d



3 - CAN WE INFER AN UNKNOWN PART OF THE LANDSCAPE?

1.0F T T T T T
05 ‘

— 588P

0.5

Yd 0.0

"Theoretical fitness landscapes

e Global |

o Eqgbox d la Ferettiet al., JTB, 2016 1 ~°°F .
v \ - Drop one mutation
-1.0F, l ] -1.0} l l l l =
0 1 2 3 4 5 0 1 2 3 4 5
d d
1.0 -

0.5} -
| 6-step sublandscapes S
0.0k -
7 =01L 11 ]
L 5 i memsm F585|-H588L-T589A
=
g - E— 588P
T JJ ﬁ]ﬂﬂ; '
i e [ 5851-N588H-M589Q
I 0.0 UM IR S 06, =
04 08 1.2 1.6 e Global
/
-1.0 ] " ] ] ] 1
0 1 > 3 4 5

d

Epistasis measure gammag with increasing Hamming distance d



3 - CAN WE INFER AN UNKNOWN PART OF THE LANDSCAPE?

1.0F T T T T T
05 ¥

— 588P

0.5

Yd 0.0

"Theoretical fitness landscapes

0.0F -
ya BT e GlOb

- Eqgbox d la Ferettiet al., JTB, 2016 1 ~°°F .
v \ - Drop one mutation
-1.0, I B -1.0[=y I I 1
0 1 2 3 4 5 0 1 2 3 4 5
d d
1.0 1= 1.0

0.5} - 0.5}
| 6-step sublandscapes SE——— AN
Ya 0.0p - 0_1'_ p | Ya 0.0F : ' : === — \-
| £ . e F585|-H588L-T589A |z - S
=] | = [
g — 588P s 010 T
—05F £ | 4 -05F % | -
- s L5851-N588H-M589Q i3 _ e \Worst
I O.OpRitiUIR PRIEILE) o I i
-1.0p l s l l l = -1.0 1 r/s% 3 ] L
0 1 2 3 4 5 0 1 2 3
d d

Epistasis measure gammag with increasing Hamming distance d



SUMMARY/CONCLUSION

On average, our intragenic fitness
landscape looks rugged and negative
epistasis 1s common.

The global peak is accessible and
reached via a highly synergistic
combination of four mutations.

However, when evolving from
parental type, adaptation may stall at
a local peak.




SUMMARY/CONCLUSION

On average, our intragenic fitness
landscape looks rugged and negative
epistasis 1s common.

The global peak is accessible and
reached via a highly synergistic
combination of four mutations.

However, when evolving from
parental type, adaptation may stall at
a local peak.

So far, limited predictive
potential, but lots of ideas for
the future...




FUTURE ENDEAVORS

» identify/develop informative measures and (mechanistic)
models to characterize empirical fitness landscapes

» understand how fitness landscapes change across
environments and genetic backgrounds

» study the role of epistasis and fitness landscapes across levels
of organization and time scales
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» How does the structure of the codon table affect
adaptation on a fitness landscape?

» How does the fitness landscape of a single amino acid
position differ across environments?

» How strong are the effects of synonymous mutations,
and do they matter?

» Which factors can explain synonymous effects?
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» How does the structure of the codon table affect
adaptation on a fitness landscape?

position differ across environments?

and do they matter?
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» Which factors can explain synonymous effects?
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> Compare landsc:ape without synonymous effects with

a landscape that has synonymous effects
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Evolutionary Dynamics @ 1GC:

» How do populations adapt to challenging environments?
E.g., how does drug resistance evolve?

» Which processes drive speciation & diversification?

» What is the role of interactions in evolution?

What we do

» Study evolutionary processes using simple models .
» Evaluate these models using empirical and simulated data
» Use modeling to inform experimental design a priori




MUTAGENIC DRUGS AGAINST RNA VIRUS INFECTIONS
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» RNA viruses have exceptionally large mutation rates.

From Sanjudn et al., 2010, JVI
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MUTATIONAL MELTDOWN/LETHAL MUTAGENESIS

> a population goes extinct because it accumulates too many
deleterious mutations (such that the absolute growth rate

becomes <1) - this can be caused by mutation pressure or
random genetic drift (or both)

Muller’s ratchet: the step-wise
loss of the fittest genotype due

to accumulation of deleterious E
mutations in asexual E
populations

E.g., Lynch et al., 1990, Evolution
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MUTAGENIC DRUGS AGAINST RNA VIRUS INFECTIONS

Slmulated example

Time to extinction

1000} - Carrymg capac1 y: 250
Selection coeffigient: -0.05
800 | Genome lengthj 1000
600 |
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Mutation rate per genome per generatlon

» Mutagenic drug favipiravir approved for use against influenza in Japan
and discussed as promising candidate drug against various RNA viruses.



MUTAGENIC DRUGS AGAINST RNA VIRUS INFECTIONS

Slmulated example I N=250

Time to extinction
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Selection coefficient: -0.03
Mutation rate: 0.5

» Mutagenic drug favipiravir approved for use against influenza in Japan
and discussed as promising candidate drug against various RNA viruses.
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INFLUENZA A LABORATORY EVOLUTION UNDER MUTAGENIC DRUG TREATMENT

Laboratory evolution without drug

Genome position
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» Using laboratory evolution combined with time-serial genome-
wide sequencing we can quantify the evolutionary dynamics of

influenza virus.

Bank et al., 2016, Evolution



INFLUENZA A LABORATORY EVOLUTION UNDER MUTAGENIC DRUG TREATMENT
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SIMULATE EVOLUTION OF A CLONAL POPULATION WITH HIGH MUTATION RATES
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CAN VIRUSES ADAPT TO MUTAGENIC DRUG TREATMENTS?

» "Adaptation" in this context means survival/persistence of a
pathogen or other health threat despite exposure to drug,
immune system, novel environments, etc.

» By which mechanisms can viruses escape from mutagenic
drug treatment? Can we detect the signatures of such
adaptation? What are the dangers of mutagenic drugs?

> An example of evolutionary rescue: an adaptation spreads in
a population that is otherwise doomed to extinction due to a
change in the environment
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POTENTIAL MECHANISMS OF RESCUE FROM INCREASED MUTATION RATES

> "traditional" beneficial mutations that increase growth rate:
only a temporary fix because they will not stop the ratchet

» a mutation rate modifier that reduces the mutation rate below
the critical level: evolution of drug resistance

» a modifier of the fitness distribution, i.e. a mutation that
changes mutational effects genome-wide: evolution of drug

tolerance
Important to note: both weaker and stronger

effects of (deleterious) mutations can slow down
the ratchet (Gordo & Charlesworth 2000)

Tolerance could be the most dangerous mechanism of adaptation to mutagenic

drugs because it allows the virus to propagate at high mutation rates, which may
allow rare/unseen/complex beneficial mutations to invade subsequently.




TODAY'S QUESTIONS

» How does the availability of “traditional” beneficials prolong
extinction times?

» When does a mutation rate modifier invade?

» In which conditions does a modifier of the distribution of
fitness eftfects (DFE) invade?



SIMULATION DETAILS

» Genome with L di-allelic loci [1000]

» Carrying capacity C of the clonal population [250], initial
population size Cy [invasion size: 10]

» Initial absolute growth rate R [2]
> Arbitrary distribution of fitness effects [-0.05; multiplicative]
» Mutation rate y per genome per generation [0.3]

» Record haplotypes in each generation, stop if no extinction has
occurred after 1000 generations (transmission/immune reaction)

> [ loci with “adaptive" mutations; either beneficial, mutation rate
modifier, or DFE modifier

Today: focus on extinction time & “rescue" probability
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EXTINCTION TIMES WITH BENEFICIAL MUTATIONS
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> Many beneficials necessary to allow for significantly prolonged time to
extinction.

» Clonal interference impedes efficient spread of multiple beneficials and
Increases variance in extinction times.
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INVASION OF A MUTATION RATE MODIFIER

Max. expected:  18% 100% 100%
Rescued: 1% 63% 72%
1000 | | ' ' ' | Carrying capacity: 250
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5 800 i Genome length: 1000
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Effect size of mutation rate modifier

» Mutation rate modifier of sufficient strength readily invades
and rescues the population with high probability.



INVASION OF A DFE MODIFIER
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INVASION OF A DFE MODIFIER
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INVASION OF A DFE MODIFIER
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» Both types of modifiers can invade; “chaperone” modifier
invades easily but rarely rescues; “negative" modifier only
invades under specific conditions but then rescues reliably.
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CONCLUSIONS

» Extinction process is rather deterministic over a large range of
the parameter space.

» Many available beneficials are needed to prolong the
extinction time (e.g., to successful transmission of the virus).

» If available, mutation rate modifiers readily invade and make
the population resistant to mutagenic treatment.

» DFE modifiers in both directions can invade and make the
virus tolerant to high mutation rates. This is possibly the
most dangerous adaptation mechanism, because it could
modify virus evolution also in absence of the drug.
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