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HOW DO ORGANISMS ADAPT TO CHALLENGING ENVIRONMENTS?

➤ How big/small are adaptive steps?

➤ What is the role of selection vs. genetic drift?

➤ What are the proportions of beneficial, neutral, and 
deleterious mutations?

➤ How do mutational effects change dependent on the 
environment?

➤ How do mutational effects change dependent on the genetic 
background? (I.e., what is the role of epistasis?)

➤ What is the shape of the fitness landscape?



UNDERSTANDING EVOLUTION THROUGH FITNESS LANDSCAPES
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Wright, 1932
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WHY FITNESS LANDSCAPES ARE DIFFICULT

➤ fitness landscapes yield information on the 
predictability and repeatability of evolution

➤ it becomes increasingly simple to measure 
empirical fitness landscapes

➤ accumulating data on gene networks and 
pathways

But:

➤ enormous complexity

➤ unclear whether there is predictive 
potential when combining theory and data

E.g.: Can we predict costs of anti-
microbial resistance across environments?
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Deep mutational scanning results in a  
(almost “evolution-free”) snapshot of the fitness landscape.
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DEEP MUTATIONAL SCANNING FROM A MODELER’S POINT OF VIEW 

➤ Exponential growth of hundreds 
of mutants, each with its own 
growth rate/selection coefficient 

➤ Sequencing corresponds to 
multinomial sampling of 
mutants independently at each 
sampling time

➤ What is the attainable experimental accuracy? 

➤ How do experimental details (number and timing of samples, 
sequencing coverage, number of mutants, etc.) affect the 
outcome?



➤ optimize experimental setup 
for deep mutational 
scanning approaches 

➤ statistical predictions 
applicable via interactive 
web tool: 
www.evoldynamics.org/tools

Genetics, 2016
Hermina Ghenu
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Guide to experimental design of deep mutational 
scanning studies    Matuszewski*, Hildebrandt* et al., 2016, Genetics

Complete fitness landscape of 640 combinations of 
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high salinity environment 
13 single-aa mutations 
2 replicates 
all possible combinations of aa's 
≈1600 nt mutations

➤ relatively “unbiased" selection of mutations 

➤ multi-allelic fitness landscape
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3 QUESTIONS

➤ Do single step mutations predict the way to the global 
optimum?

➤ Will adaptation take the population to the global optimum?

➤ Can we infer an unknown part of the fitness landscape?
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The global peak is accessible and 
reached via a highly synergistic 
combination of four mutations. 

However, when evolving from 
parental type, adaptation may stall at 
a local peak.
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On average, our intragenic fitness 
landscape looks rugged and negative 
epistasis is common. 

The global peak is accessible and 
reached via a highly synergistic 
combination of four mutations. 

However, when evolving from 
parental type, adaptation may stall at 
a local peak.

SUMMARY/CONCLUSION

So far, limited predictive 
potential, but lots of ideas for 
the future…



FUTURE ENDEAVORS

➤ identify/develop informative measures and (mechanistic) 
models to characterize empirical fitness landscapes 

➤ understand how fitness landscapes change across 
environments and genetic backgrounds 

➤ study the role of epistasis and fitness landscapes across levels 
of organization and time scales
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THE FITNESS LANDSCAPE OF SYNONYMOUS MUTATIONS
➤ How does the structure of the codon table affect 

adaptation on a fitness landscape?

➤ How does the fitness landscape of a single amino acid 
position differ across environments?

Inês Fragata



AAA

AAG

AAT

AAC

ACT

ACG

ACC

ACA

CGG

CGT

CGC

CGA

AGG
AGA

TCTTCGTCCTCAAGT
AGC

ATT

ATC

ATA

ATG

CAG

CAA

CAT

CAC

CCT

CCG

CCC

CCA

TTG

TTA

CTT

CTG

CTC

CTA

GAG

GAA

GAT

GAC

GCT

GCG

GCC
GCA

GGT GGG GGC GGA GTT
GTG

GTC

GTA

TGA

TAG

TAA

TAT

TAC

TGT

TGC

TGG

TTT

TTC

THE FITNESS LANDSCAPE OF SYNONYMOUS MUTATIONS
➤ How does the structure of the codon table affect 

adaptation on a fitness landscape?

➤ How does the fitness landscape of a single amino acid 
position differ across environments?

➤ How strong are the effects of synonymous mutations, 
and do they matter?

Inês Fragata



AAA

AAG

AAT

AAC

ACT

ACG

ACC

ACA

CGG

CGT

CGC

CGA

AGG
AGA

TCTTCGTCCTCAAGT
AGC

ATT

ATC

ATA

ATG

CAG

CAA

CAT

CAC

CCT

CCG

CCC

CCA

TTG

TTA

CTT

CTG

CTC

CTA

GAG

GAA

GAT

GAC

GCT

GCG

GCC
GCA

GGT GGG GGC GGA GTT
GTG

GTC

GTA

TGA

TAG

TAA

TAT

TAC

TGT

TGC

TGG

TTT

TTC

THE FITNESS LANDSCAPE OF SYNONYMOUS MUTATIONS
➤ How does the structure of the codon table affect 

adaptation on a fitness landscape?

➤ How does the fitness landscape of a single amino acid 
position differ across environments?

➤ How strong are the effects of synonymous mutations, 
and do they matter?

➤ Which factors can explain synonymous effects?

Inês Fragata



AAA

AAG

AAT

AAC

ACT

ACG

ACC

ACA

CGG

CGT

CGC

CGA

AGG
AGA

TCTTCGTCCTCAAGT
AGC

ATT

ATC

ATA

ATG

CAG

CAA

CAT

CAC

CCT

CCG

CCC

CCA

TTG

TTA

CTT

CTG

CTC

CTA

GAG

GAA

GAT

GAC

GCT

GCG

GCC
GCA

GGT GGG GGC GGA GTT
GTG

GTC

GTA

TGA

TAG

TAA

TAT

TAC

TGT

TGC

TGG

TTT

TTC

THE FITNESS LANDSCAPE OF SYNONYMOUS MUTATIONS
➤ How does the structure of the codon table affect 

adaptation on a fitness landscape?

➤ How does the fitness landscape of a single amino acid 
position differ across environments?

➤ How strong are the effects of synonymous mutations, 
and do they matter?

➤ Which factors can explain synonymous effects?

Inês Fragata

suggests that, e.g., codon composition can affect RNA pack-
aging (Sauna and Kimchi-Sarfaty 2011). The high precision
of the EMPIRIC estimates enables us to explicitly study the
distribution of synonymous fitness effects. Each of our data
sets comprises 15 mutations that are synonymous to the
wild-type sequence, and even within this small selection,
we identify a deleterious outlier that persists across repli-
cates and in three of the six different environments (cf. Fig-
ure 9 and Figure S7). The identified mutation 588aac
represents an unpreferred change coding for asparagine.

Genotype 3 environment interactions

While the overall shape of the DFE is similar between
environments (Figure 4), different individual mutations may
nonetheless have very different effects, depending on the
environment. Such a scenario is referred to as a genotype 3
environment (G 3 E) interaction, wherein the fitness effect
of a mutation depends on its environment. The consistency
of evolutionary responses of populations to different envi-
ronments will depend in large part on the extent of G 3 E,

which can be captured as the covariance of fitness effects
between environments. If covariance is high, then we expect
populations to follow very similar trajectories, since the
same mutations are beneficial or deleterious in each envi-
ronment. By contrast, if covariance is low or negative, then
different mutations would be expected to accumulate be-
tween populations. The extent and magnitude of G 3 E is
of substantial current interest (e.g., Lazzaro et al. 2008;
Gerke et al. 2010) and is typically inferred from studies of
standing variation in natural populations. Thus, the current
data set represents a unique opportunity to examine the
extent to which fitness varies with environment for new
mutations.

We find strong between-environment correlations for all
mutants (cf. Table 4) and for the 81 single-step mutants
(data not shown), with correlation coefficients ranging from
0.76 to 0.97 (all mutants) or from 0.80 to 0.97 (single-step
mutants). This result suggests that, on the whole, the sign
and magnitude of selection coefficients are consistent be-
tween environments. Further consideration, however, sug-
gests that there is substantial variation in fitness effects
between environments for particular classes of mutation.
For example, among the 76 mutants that are beneficial in
at least one environment, correlation coefficients range from

Figure 9 Box–whisker plot of the growth rates of the 15 mutations
synonymous to the wild-type sequence in the standard environment
(30!), based on 1000 samples from the posterior distribution. Boxes rep-
resent the interquartile range, whiskers extend to the highest/lowest data
point within the box 61.5 times the interquartile range, and black circles
repesent outliers.

Figure 8 Estimated k parameter under the generalized Pareto distribu-
tion (GPD) from 1000 samples from the posterior, taking into account all
mutations with r . 1 in the sample. Negative k estimates indicate
a bounded beneficial DFE (i.e., Weibull domain of the DFE tail) for all
but the 25S environment, suggesting a heavy-tailed distribution (i.e., DFE
belonging to the Frechet domain of attraction). Because of the low num-
ber of beneficial mutations in the 36! environment, there is little power to
estimate its tail shape.

Table 4 Correlations and covariances between fitnesses in different environments for all mutants (n = 560)

Environment 25! 25S 30! 30S 36! 36S

25! 0.0012 0.76 0.97 0.91 0.85 0.93
(0.75–0.77) (0.97–0.98) (0.90–0.92) (0.85–0.86) (0.92–0.93)

25S 0.00029 0.00012 0.82 0.86 0.77 0.85
(0.00029–0.00031) (0.81–0.83) (0.84–0.88) (0.76–0.78) (0.83–0.86)

30! 0.0017 0.00047 0.0026 0.95 0.89 0.97
(0.00029–0.00031) (0.00045–0.00048) (0.94–0.96) (0.88–0.89) (0.96–0.97)

30S 0.00055 0.00017 0.00083 0.0003 0.84 0.95
(0.00054–0.00056) (0.00016–0.00017) (0.00082–0.00085) (0.83–0.84) (0.95–0.96)

36! 0.0018 0.000528 0.0027 0.00088 0.0037 0.91
(0.0018–0.0018) (0.00051–0.00054) (0.0027–0.0028) (0.00086–0.00090) (0.91–0.92)

36S 0.00070 0.00021 0.0011 0.00036 0.00128 0.00047
(0.00069–0.00072) (0.00020–0.00021) (0.0010–0.0011) (0.00035–0.00037) (0.0012–0.0012)

Correlation coefficients are given above the diagonal, covariances are below the diagonal, and within-environment variances are on the diagonal (boldface type). Values
given are median and 95% credibility intervals from 10,000 samples of the posterior.

850 C. Bank et al.
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➤ Compare landscape without synonymous effects with 
a landscape that has synonymous effects

Inês Fragata
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Evolutionary Dynamics @ IGC: 
➤ How do populations adapt to challenging environments? 

E.g., how does drug resistance evolve? 
➤ Which processes drive speciation & diversification? 
➤ What is the role of interactions in evolution?

Mutation Genetic drift Migration Selection

What we do 
➤ Study evolutionary processes using simple models 
➤ Evaluate these models using empirical and simulated data 
➤ Use modeling to inform experimental design a priori



From Sanjuán et al., 2010, JVI

MUTAGENIC DRUGS AGAINST RNA VIRUS INFECTIONS

➤ RNA viruses have exceptionally large mutation rates.
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MUTATIONAL MELTDOWN/LETHAL MUTAGENESIS

➤ a population goes extinct because it accumulates too many 
deleterious mutations (such that the absolute growth rate 
becomes <1) - this can be caused by mutation pressure or 
random genetic drift (or both)

Muller’s ratchet: the step-wise 
loss of the fittest genotype due 
to accumulation of deleterious 
mutations in asexual 
populations

E.g., Lynch et al., 1990, Evolution
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MUTAGENIC DRUGS AGAINST RNA VIRUS INFECTIONS

➤ Mutagenic drug favipiravir approved for use against influenza in Japan 
and discussed as promising candidate drug against various RNA viruses.

Simulated example
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Mutation rate per genome per generation

Carrying capacity: 250 
Selection coefficient: -0.05 
Genome length: 1000

Selection coefficient: -0.03 
Mutation rate: 0.5
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INFLUENZA A LABORATORY EVOLUTION UNDER MUTAGENIC DRUG TREATMENT

Bank et al., 2016, Evolution

➤ Using laboratory evolution combined with time-serial genome-
wide sequencing we can quantify the evolutionary dynamics of 
influenza virus.

Laboratory evolution without drug
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INFLUENZA A LABORATORY EVOLUTION UNDER MUTAGENIC DRUG TREATMENT

Bank et al., 2016, Evolution

Constant drug - virus survives

Increasing drug - virus dies

➤ Favipiravir effective at high/
increasing concentration, but 
indication of population 
recovery (i.e., adaptation to 
drug treatment) at constant 
(intermediate) concentrations. 

➤ What is the signature of 
different adaptation 
mechanisms? How good are our 
methods for detection of 
candidate loci? How informative 
are allele frequencies?
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CAN VIRUSES ADAPT TO MUTAGENIC DRUG TREATMENTS?

➤ "Adaptation" in this context means survival/persistence of a 
pathogen or other health threat despite exposure to drug, 
immune system, novel environments, etc.

➤ By which mechanisms can viruses escape from mutagenic 
drug treatment? Can we detect the signatures of such 
adaptation? What are the dangers of mutagenic drugs?

➤ An example of evolutionary rescue: an adaptation spreads in 
a population that is otherwise doomed to extinction due to a 
change in the environment
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POTENTIAL MECHANISMS OF RESCUE FROM INCREASED MUTATION RATES

➤ "traditional" beneficial mutations that increase growth rate: 
only a temporary fix because they will not stop the ratchet

➤ a mutation rate modifier that reduces the mutation rate below 
the critical level: evolution of drug resistance

➤ a modifier of the fitness distribution, i.e. a mutation that 
changes mutational effects genome-wide: evolution of drug 
tolerance

Important to note: both weaker and stronger 
effects of (deleterious) mutations can slow down 
the ratchet (Gordo & Charlesworth 2000)

Tolerance could be the most dangerous mechanism of adaptation to mutagenic 
drugs because it allows the virus to propagate at high mutation rates, which may 

allow rare/unseen/complex beneficial mutations to invade subsequently.



TODAY’S QUESTIONS

➤ How does the availability of “traditional" beneficials prolong 
extinction times? 

➤ When does a mutation rate modifier invade? 

➤ In which conditions does a modifier of the distribution of 
fitness effects (DFE) invade?



SIMULATION DETAILS

➤ Genome with L di-allelic loci [1000] 

➤ Carrying capacity C of the clonal population [250], initial 
population size C0 [invasion size: 10] 

➤ Initial absolute growth rate R [2] 

➤ Arbitrary distribution of fitness effects [-0.05; multiplicative] 

➤ Mutation rate μ per genome per generation [0.3] 

➤ Record haplotypes in each generation, stop if no extinction has 
occurred after 1000 generations (transmission/immune reaction)  

➤ l loci with “adaptive" mutations; either beneficial, mutation rate 
modifier, or DFE modifier

Today: focus on extinction time & “rescue" probability
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EXTINCTION TIMES WITH BENEFICIAL MUTATIONS

➤ Many beneficials necessary to allow for significantly prolonged time to 
extinction.

➤ Clonal interference impedes efficient spread of multiple beneficials and 
increases variance in extinction times.

Number of beneficial loci

Ti
m

e 
to

 e
xt

in
ct

io
n

Carrying capacity: 250 
Selection coefficient: +/-0.05 
Genome length: 1000



INVASION OF A MUTATION RATE MODIFIER

Effect size of mutation rate modifier

Ti
m

e 
to

 e
xt

in
ct

io
n

Carrying capacity: 250 
Selection coefficient: +/-0.05 
Genome length: 1000



INVASION OF A MUTATION RATE MODIFIER

Effect size of mutation rate modifier

Ti
m

e 
to

 e
xt

in
ct

io
n

Carrying capacity: 250 
Selection coefficient: +/-0.05 
Genome length: 1000

1% 72%63%Rescued:
18% 100%100%Max. expected:



INVASION OF A MUTATION RATE MODIFIER

➤ Mutation rate modifier of sufficient strength readily invades 
and rescues the population with high probability.

Effect size of mutation rate modifier
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INVASION OF A DFE MODIFIER

➤ Both types of modifiers can invade; “chaperone” modifier 
invades easily but rarely rescues; “negative" modifier only 
invades under specific conditions but then rescues reliably.
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CONCLUSIONS

➤ Extinction process is rather deterministic over a large range of 
the parameter space.

➤ Many available beneficials are needed to prolong the 
extinction time (e.g., to successful transmission of the virus).

➤ If available, mutation rate modifiers readily invade and make 
the population resistant to mutagenic treatment.

➤ DFE modifiers in both directions can invade and make the 
virus tolerant to high mutation rates. This is possibly the 
most dangerous adaptation mechanism, because it could 
modify virus evolution also in absence of the drug.
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