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Epistasis and sign epistasis

• General setting: L diallelic haploid loci τi at which a mutation can be
present (τi = 1) or absent (τi = 0).

• A genotypic fitness landscape is a function on the set of 2L genotypes

• Epistasis implies interactions between the effects of different mutations

• Sign epistasis: Mutation at a given locus is beneficial or deleterious
depending on the state of other loci Weinreich, Watson & Chao (2005)
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Genotypic complexity

• A genotypic fitness landscape is complex/rugged if it has multiple fitness
maxima

• The existence of reciprocal sign epistasis is a necessary condition for the
existence of multiple peaks Poelwijk et al., JTB 2011
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• Multi-peakedness is guaranteed if all instances of pairwise sign epistasis
are reciprocal Crona et al., JTB 2013

• Question for this talk: How does genotypic complexity arise from a
nonlinear phenotype-fitness map?



Empirical example: Aspergillus niger
J.A.G.M. de Visser, S.C. Park, JK, American Naturalist 174, S15 (2009)

• Combinations of 8 individually deleterious marker mutations
(one out of

(8
5

)

= 56 five-dimensional subsets shown)

• Arrows point to increasing fitness, 3 local fitness maxima highlighted



Genotype-phenotype-fitness maps



“The statistical requirements of the situation, in which one thing
is made to conform to another in a large number of different
respects, may be illustrated geometrically...”

R.A. Fisher, The Genetical Theory of Natural Selection (1930)

O. Tenaillon, Annu. Rev. Ecol. Evol. Sys. (2014)



From simple phenotypes to complex genotypes

• Organism is characterized by n real-valued phenotypic traits xi which form
a vector~x = (x1,x2, ...,xn) in a n-dimensional Euclidean space

• Fitness is a (nonlinear) function F(~x) of the phenotype with a unique
optimum at the origin x1 = x2 = ... = xn = 0

• Universal pleiotropy: Mutations are isotropic random displacements in
phenotypic space (univariate Gaussian)

• Additivity of phenotypes: Given two phenotypic mutations ~m1, ~m2, the
phenotypic effect of the double mutant is ~m12 = ~m1 + ~m2 Martin et al. 2007

• Then the phenotypic landscape F(~x) induces a genotypic landscape

f (τ1, ...,τL) = F

(

~Q+
L

∑
i=1

τi~mi

)

where ~Q represents the wildtype and the ~mi are a fixed set of mutations



Sign epistasis in Fisher’s geometric model
Blanquart et al., Evolution (2014)

Two distinct mechanisms related to

• the overshooting of the phenotypic optimum or

• (for n > 1) the curvature of fitness isoclines (antagonistic pleiotropy)



One-dimensional example: Bacteriophage ID 11

Rokyta et al., PLOS Genetics 2011



Two-dimensional example: TEM-1 β -lactamase

M.F. Schenk et al., Mol. Biol. Evol. (2013)
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• Genotypic landscapes constructed from two sets of mutations increasing
resistance against cefotaxime

• Data of large (open) and small (filled) effect landscapes are well described
by a two-dimensional phenotype-fitness map without an optimal phenotype



Diminishing returns epistasis

in Aspergillus nidulans

S. Schoustra, S. Hwang, JK and J.A.G.M. de Visser, Proc. Roy. Soc. B (2016)



Experimental system

• 244 beneficial mutants of A. nidulans collected from the boundary of
growing colonies in complex (rich) or minimal (poor) medium

• Generated 55 pairwise combinations between mutations of similar effect
using sexual crosses

• Goal: Quantify the dependence of pairwise epistatic interaction

εab = ∆ fab− (∆ fa +∆ fb)

on the strength s ≈ ∆ fa ≈ ∆ fb of single mutations

• Since double mutant fitness is determined by measuring the growth rate of
colonies containing all four types, it can be detected only if

∆ fab > max{∆ fa,∆ fb} = s or εab > −s

• Data show that εab < 0 and is negatively correlated with s



Diminishing returns epistasis from FGM

magnitude epistasis sign epistasis

• Pairs of mutations with the same fitness effect differ widely in their epistatic
interactions

• FGM contains a mechanism of intrinsic variability



FGM parameters and fitness function

• Mutations are drawn from an n-dimensional normal distribution with
standard deviation σ

• Wild type resides at distance d from phenotypic optimum
⇒ scaled distance d/σ

• Phenotypic fitness function F(~x) = −s0|~x/d|2



Fit of FGM to data

• Measurement error (inner pink region) is insufficient to explain variability

• Crowding of data points around the line ε = −s; outliers below this line
originate from a tradeoff between germination and growth

• FGM parameters: d/σ = 6.89, n = 19.3, s0/sm = 1.41 (rich)
d/σ = 9.81, n = 34.8, s0/sm = 1.62 (poor)

• How to interpret the differences in n?



Genotypic complexity of FGM

S. Hwang. S.-C. Park, JK, Genetics 206:1049-1079 (2017)



Phenotypic and genotypic complexity

• Fisher (1930) showed that the probability of a phenotypic mutation of size
r to be beneficial is (for large n)

Pb =
1√
2π

∫ ∞

x
dt e−t2/2 =

1
2
erfc(x/

√
2)

with x =
√

nr/d = nσ/d

• This implies that Pb → 0 when n → ∞ at fixed scaled distance to the
phenotypic optimum.

• As a consequence, the probability that the phenotype is at a genotypic
fitness maximum is

Pmax = (1−Pb)
L → 1

• Does this imply that the genotypic landscape becomes more rugged
(complex) with increasing phenotypic dimension n?



Fraction of sign epistasis

• For phenotypic mutation vectors ~m1 and ~m2 define the quantities

R1,2 =
1
n

(

|~Q+~m1,2|2−|~Q|2
)

, R =
1
n

(

|~Q+~m1 +~m2|2−|~Q|2
)

which determine whether the respective mutations are deleterious (> 0) or
beneficial (< 0)

• For large n their joint distribution under FGM is

P(R1,R2,R) ∼ exp

[

−1
8

n(R1 +R2−R)2− 1
2

x2[(R1−1)2 +(R2−1)2]

]

where mutation vectors have scale σ = 1 for simplicity

• Large n enforces R = R1 +R2 and hence suppresses epistasis

• Fraction of simple Ps and reciprocal Pr sign epistasis can be computed by
integrating P over suitable domains



Fraction of sign epistasis: Asymptotic results
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• For n → ∞ at fixed x the leading behavior is

Ps ≈
4xe−x2/2

π
√

n
, Pr ≈

2x2e−x2

πn

• Sign epistasis becomes rare for large n and generally Pr ≪ Ps

• Similar behavior obtains for beneficial single mutations



Genotype-phenotype-fitness map for multiple loci

• The mapping

τ →~z(τ) = ~Q+
L

∑
i=1

τi~mi

projects L-dimensional hypercube onto n-dimensional phenotype space

• Figure shows the wild type phenotype (green triangle) and genotypic
fitness maxima (red squares) for L = 3,n = 2



Number of genotypic maxima

• A common global quantifier of genotypic complexity is the expected number
of genotypic fitness maxima 〈N 〉

• Experience with random field models shows that in many cases

〈N 〉 ∼ exp[Σ∗L] for L → ∞

which defines the genotypic complexity Σ∗ ≥ 0

• Within FGM, a genotype τ = (τ1,τ2, ...,τL) with phenotype

~z = ~Q+
L

∑
i=1

τi~mi

is a fitness maximum iff |~z| < |~z+(1−2τ j)~m j| for all j = 1, ...,L

• This is true with unit probability if the corresponding phenotype is optimal,
i.e. if~z = 0 ⇒ genotypic maxima arise from near-optimal phenotypes



Number of genotypic maxima: Geometry

• Composition of mutation vectors defines a random walk in phenotype
space with endpoint~z

• Removal of a leg of the walk (dashed) or addition of further mutation vectors
(dash-dotted) should not move the endpoint into the circle of radius |~z|

• To generate genotypic maxima, the walk needs to be “stretched” towards
the origin



Number of genotypic maxima: Asymptotics

• Expected number of maxima for large L is given by 〈N 〉 ∼ L−(1+n/2) exp[Σ∗L]
where Σ∗ is the solution of the variational problem

Σ∗ = max
φ∈[0,1]

{

−φ logφ − (1−φ) log(1−φ)− q2

2φ

}

with

– φ : fraction of mutations that are present (= have τi = 1)
– q = |~Q|/L: scaled distance of the wild type phenotype to the optimum

• Variational problem encodes a tradeoff between the abundance of
genotypes (“entropy”) and their likelihood to reach the phenotypic optimum
(“energy”)

• The number of maxima decreases with increasing phenotypic dimension,
but to leading (exponential) order it is independent of n



Number of genotypic maxima: Phase transition

• Σ∗(q = 0) = ln2 ⇒ 〈N 〉 ∼ 2L

L1+n/2 , to be compared to an uncorrelated

random fitness landscape (“house-of-cards model”) with 〈N 〉 ∼ 2L

L

• Σ∗ vanishes at a first order phase transition at q = qc ≈ 0.924809

• For q > qc the number of maxima reaches a finite limit for L → ∞ which
however grows exponentially with n



Number of genotypic maxima: Regime I (q < qc)
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• Comparison to simulations for n = 1



Number of genotypic maxima: Regime II (q > qc)

• Horizontal lines show the analytic expression

〈N 〉 ≈ N> ≡
(

q−q0

q
exp

[

1
q/q0−1

])n−1

with q0 =
1√
2π

≈ 0.399



Digression: FGM as a spin glass model

• For a parabolic phenotypic fitness function F(~x) = −|~x|2 the genotypic
fitness landscape becomes

f (τ) = −|~Q|2−2
L

∑
i=1

(~Q ·~mi)τi−
L

∑
i, j=1

(~mi ·~m j)τiτ j

which corresponds to an antiferromagnetic Hopfield model with n
continuous patterns and random fields of strength ∼ |~Q|

• The linear part dominates for large |~Q| ⇒ fitness landscape is less rugged
when wildtype phenotype is far from the origin

• The model displays a zero temperature phase transition at q = q0 < qc

where the extensive part of the ground state entropy S0 vanishes
S. Hwang, D. Dean, JK (unpublished)

• Since S0 ≈ 〈lnN 〉, for q0 < q < qc mean and typical values of N differ



Coexistence and rare events

• In the coexistence region q0 < q < qc, 〈N 〉 is dominated by rare
realizations with exponentially many maxima, whereas for typical
realizations 〈N 〉 ≈ N>
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• These rare realizations are those for which the phenotypic displacements
approach close to the optimum z = 0



Coexistence and rare events

• Coexistence leads to a large heterogeneity of landscape structures that
has been observed in previous work

Blanquart et al. 2014; Blanquart and Bataillon 2016
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Joint limit of phenotypic and genotypic dimensions

• Phenotypic dimension affects the number of genotypic fitness maxima to
leading (exponential) order when n ∼ L

• The joint limit n,L → ∞ at fixed α = n/L > 0 leads to a three-dimensional
variational problem that can only be treated numerically

• Phase diagram in the (q,α)-plane comprises two lines of first-order
transitions with critical endpoints
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• For n ≫ L the landscape becomes essentially additive (regime III)



Joint limit of phenotypic and genotypic dimensions
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Genotypic complexity of the A. nidulans landscapes
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• Rich medium landscape (CM) is more rugged, despite having lower
phenotypic dimension



Conclusions

• Fisher’s geometric model is a good example of a “proof-of-concept” model
Servedio et al., PLOS Biol. 2014

• It demonstrates how genotypic complexity can be explained in terms of
additive phenotypes combined with a simple nonlinear phenotype-fitness
map

• The relationship between complexity of the genotypic fitness landscape
and the phenotypic dimension is complicated and often non-monotonic

• The model also provides a framework for condensing experimental data
into a few phenomenological parameters, but their interpretation generally
is not straightforward

• The role of rare events and sample-to-sample fluctuations remains to be
better understood



Thank you !


