Does experimental evolution tell us anything useful?

KITP 2017

Ask questions!

http://catalog.fborfw.com/strips/98/FB112398.gif

And since time expired...

Yeast can evolutionarily learn to predict...

High salt induces arrest

Arrest prevents lethal DNA replication

Two ways of letting more Na⁺ in

Kill inducers of K⁺ entry (K⁺/Na⁺ balance critical)

Alter sugar transporters to admit Na⁺

Nichole Wespe

OUTLINE

Time travel (fossils and DNA sequence) extremely limited

Experimental evolution should be asking specific questions

Question 1: How does evolutionary novelty appear?

Question 2: How do cells adapt to the loss of beloved proteins?

Question 3: Can evolution mimic Pavlov?

No non-theological purpose

But organisms are...

...vehicles to disperse genes through time and space

Yes, evolution happens, Dorothy

At least 5 mutations

Cancer Cell

Normal Cell

Careful with chromosomes

Careless with chromosomes

Evolution

Depends on

Inheritance: offspring like parents

Mutation: genetic variation constantly generated

Selection: some genotypes leave more progeny

We have trouble understanding it because

Evolution is dominated by successions of *very rare* events

Relative probability determines evolutionary path

Historical inference from fossils & DNA imperfect

What we're missing

Experimental versus "real" evolution

Advantages

Starting point known

Selective pressure designed (not known!)

Can keep "living fossil" record

Ancestral and evolved can interbreed

Multiple, parallel experiments possible

Disadvantages

Time and population size limited

Natural environments are much, much more complex

Unknown relevance to long term, natural evolution

What is novelty and how do you get it?

Acquiring a qualitatively new, fitness-increasing property

Does nutrient capture select for multicellularity?

John Koschwanez

Why be multicellular? To utilize public goods?

WWED? :Evolving multicellularity

Experimentally evolved multicellularity

Koschwanez et al. *eLife.*, **2**, e00367 (2013)

Who's mutated?

Times mutated	# Genes	Names
7	1	ACE2
6	1	UBR1
3	2	RGT1, SNF3,
2	11	IRA1,IRA2, etc
1	39	many genes!

80 mutations: 7 promoter, 19 stop, 12 indel, 42 missense

Most (perhaps all) missense mutations are loss of function

3 frequently mutated pathways cAMP signaling (altered go/no go gambling setpoint) catabolite repression (reduced glucose addiction) mediator complex (complicated, confusing transcription control)

A model for novelty

In a crowded ecosystem
Niche 2 occupied
Mutant outcompeted
Mutant = hopeless monster

In a virgin ecosytem

Niche 2 empty

Mutant survives if w_{abs} > 1

Mutant = hopeful monster

Evolving to live without important genes

Liedewij Laan (TU Delft)

A seriously compromising mutation

If cars evolved

Yeast breaks symmetry to proliferate

Removing Bem1 is very bad

BEM1

 $bem1\Delta$

Looking at all combinations explains order of mutations

Previous selections

Multiple, poorly related trajectories

Novelty: Multicellularity (eLife '13)

Novelty: Circadian oscillator (eLife '14)

Single consistent trajectory

Loss important protein: (Bem1) (eLife '15)

Loss of function mutations dominate

Are these straws in the wind?

Repair trajectories more reproducible?

Loss of function dominates causal mutations?

Learning to live with the wrong part

Phoebe Hsieh

Paralogs: functionally specialized proteins

How does evolution substitute red for blue?

Change in protein itself?

Change in usual suspects (its interacting partners)?

Change in novel suspects?

Kleisin is a subunit of cohesin complex

Conserved & essential for eukaryotic chromosome segregation

Cleaving kleisin separates sister chromosomes

Cleaving kleisin separates sister chromosomes

Mitotic and meiotic kleisin paralogs

Mitotic Cohesin Complex

Mitotic Kleisin: Scc1

Meiotic Cohesin Complex

Meiotic Kleisin: Rec8

Proteolysis different to allow different modes of chromosome segregation

Meiotic kleisin is bad for mitotic cells

Slow growth

Reduced cohesin binding

Defective sister chromosome cohesion

Evolving cells to live with meiotic kleisin

All populations evolve faster proliferation

Sequencing finds putative causative mutations

Experiments test their causality!!!

Who are the putative causal mutations?

<u>Usual suspects</u>

No mutation in the Kleisin_{me}

Rare mutations in three kleisin-interacting partners

Cohesin subunit: SMC1, SMC3

Kleisin protease: ESP1

Novel suspects

Transcriptional mediator complex

Mediator links RNA polymerase II and transcription factors

The Cdk8 complex is highly mutated

Mediator mutations in 14/15 independent lineages

The Cdk8 complex is highly mutated

Majority of mutations: early stop codon

Cdk8 complex mutations kill proteins

Does loss of Cdk8 function fix sister cohesion?

The assay: mark one chromosome with little green dots

Sister cohesion

Loss of Cdk8 partially fixes cohesion defect

Summary

Yeast cells adapt to use meiotic kleisin in mitosis

Primary target: transcriptional mediator complex

Killing Cdk8 reduces cohesion defect

Evolving to live with unstable replication forks

Marco Fumasoni

Organization of bacterial and eukaryotic replisomes

Genetically perturbing the replisome: *ctf4*

Experimental evolution

10 ~ Generations per day = 1000 ~ Generations in 4 months

Relative fitness increase over 1000 generations

Mutations affect the replication machinery

Replication fork

Mutations break the DNA damage checkpoint

These mutations found only in haploids

Recurrent chromosome rearrangements

These mutations found only in recombination⁺ strains

Summary

Cells adapt to perturbed DNA replication

The replisome can accept mutations in essential genes

Other conserved pathways have been turned up or down

Are these straws in the wind?

Repair trajectories more reproducible?

Loss of function dominates causal mutations?

In nature, novelty produced by gene inactivation?