The evolution of bacterial gene regulation

Olin Silander Institute of Natural and Mathematical Sciences Massey University How do novel functions evolve?

- All amino acids
- Carbohydrates
- All vitamins
- Trace elements

glucose metabolism and synthesis of building blocks is **not** necessary

Minimal media

- Carbon (glucose)
- Nitrogen (NH₄CI)
- Sulfur (MgSO₄)
- Phosphorous (Na₂HPO₄, KH₂PO₄)
- Trace elements

glucose metabolism and synthesis of all building blocks is necessary

- All amino acids
- Carbohydrates
- All vitamins
- Trace elements

glucose metabolism and synthesis of building blocks is **not** necessary

Minimal media

- Carbon (glucose)
- Nitrogen (NH₄CI)
- Sulfur (MgSO₄)
- Phosphorous (Na₂HPO₄, KH₂PO₄)
- Trace elements

glucose metabolism and synthesis of all building blocks is necessary

remove a function involved in carbon metabolism or building block biosynthesis

- All amino acids
- Carbohydrates
- All vitamins
- Trace elements

glucose metabolism and synthesis of building blocks is **not** necessary

Minimal media

- Carbon (glucose)
- Nitrogen (NH₄CI)
- Sulfur (MgSO₄)
- Phosphorous (Na₂HPO₄, KH₂PO₄)
- Trace elements

glucose metabolism and synthesis of all building blocks is necessary

remove a function involved in carbon metabolism or building block biosynthesis

- All amino acids
- Carbohydrates
- All vitamins
- Trace elements

glucose metabolism and synthesis of building blocks is **not** necessary

Minimal media

- Carbon (glucose)
- Nitrogen (NH₄CI)
- Sulfur (MgSO₄)
- Phosphorous (Na₂HPO₄, KH₂PO₄)
- Trace elements

glucose metabolism and synthesis of all building blocks is necessary

remove a function involved in carbon metabolism or building block biosynthesis

- All amino acids
- Carbohydrates
- All vitamins
- Trace elements

glucose metabolism and synthesis of building blocks is **not** necessary

Minimal media

- Carbon (glucose)
- Nitrogen (NH₄CI)
- Sulfur (MgSO₄)
- Phosphorous (Na₂HPO₄, KH₂PO₄)
- Trace elements

glucose metabolism and synthesis of all building blocks is necessary

remove a **gene** that is conditionally essential in minimal (M9) glucose media

Can this function re-evolve?

How de we know if a gene is conditionally essential in M9 glucose?

How de we know if a gene is conditionally essential in M9 glucose?

Hypothesis: there is an "underground" metabolism of enzymes that can perform the functions of other enzymes, but much less efficiently

Is the function of this enzyme enough to allow growth?

How de we know if a gene is conditionally essential in M9 glucose?

Hypothesis: there is an "underground" metabolism of enzymes that can perform the functions of other enzymes, but much less efficiently

How close are we to the limit of no growth?

ppc - phosphoenolpyruvate carboxylase

Is a gene conditionally essential in M9 glucose?

Is a gene conditionally essential in M9 glucose?

A gene is "essential" if no *sustained* growth is observed in the deletion strain

A gene is "essential" if no sustained growth is observed in the deletion strain

Molecular Systems Biology (2006) doi:10.1038/msb4100050
© 2006 EMBO and Nature Publishing Group All rights reserved 1744-4292/06 www.molecularsystemsbiology.com
Article number: 2006.0008

molecular systems biology

Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection

Tomoya Baba^{1,2}, Takeshi Ara¹, Miki Hasegawa^{1,3}, Yuki Takai^{1,3}, Yoshiko Okumura¹, Miki Baba¹, Kirill A Datsenko⁴, Masaru Tomita¹, Barry L Wanner^{4,*} and Hirotada Mori^{1,2,*}

Received 28.9.05; accepted 7.12.05

¹ Institute for Advanced Biosciences, Keio University, Tsuruoka City, Yamagata, Japan, ² Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan, ³ CREST, JST (Japan Science and Technology), Kawaguchi, Saitama, Japan and ⁴ Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

^{*} Corresponding authors. BL Wanner, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2054, USA. Tel.: + 1 765 494 8034; Fax: + 1 765 494 0876: E-mail: blwanner@purdue.edu or H Mori, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan. Tel.: + 81 743 72 5660; Fax: + 81 743 72 5669; E-mail: hmori@gtc.naist.jp

We selected 87 different deletion strains from the Keio collection

Evolution starts through slow dilution into minimal glucose media

- 5 replicate evolving lineages for each deletion genotype
- 435 lineages in total
- 5-fold dilutions for first ten transfers; 100-fold for next
 18 transfers
- ~150 generations of evolution in total

We define "new function" as cases in which deletion strains can now grow on minimal media

68 lineages evolved "new functions"

Lag times were consistently longer than the ancestor (no deletion strain)

~10 times as hard to evolve new function for biosynthesis (odds ratio)

Genomic amplifications are common, often paralleled, and extensive

How does novel function evolve?

Neutral expectation using empirical matrix (Petrov and Hershberg 2010):

66% of all mutations are GC:AT

83% of all mutations are transitions

How does novel function evolve?

Non-synonymous point mutations highly enriched:

Ka/Ks: 6.0

Intergenic point mutations highly enriched:

 K_i/K_s : 11.8

Point mutations at intergenic sites are roughly twice as likely to be selected for as point mutations that change an amino acid

Intergenic indel are roughly 3.5 times as likely to be selected for as coding indels

The phenotypic effects of intergenic mutations

Predicted transcriptional output of ancestral promoter

The phenotypic effects of intergenic mutations

Predicted transcriptional output of ancestral promoter

Is this change meaningful?

calculate binding energy

Predicted transcriptional output (AU)

Predicted transcriptional output (AU)

30% of intergenic mutations increase s70 binding by >10%

Only 3.5% of random mutations do the same

What are the functions of the recruited genes?

What are the functions of the recruited genes?

Distance in STRING network

What are the functions of the recruited genes?

Transposon insertions are a frequent mechanism of new function

3/5 of glyA lines

glyA: conversion of serine to glycine

kbl: conversion of threonine to glycine

HisB mutations are frequent in serB deletion lines

increases in mean expression level are critical for evolving new functions

Single genotype
Homogenous environment

Phenotypic noise

Single genotype
Homogenous environment

Phenotypic noise

Variation is inevitable if processes involve small numbers of molecules

What does transcriptional noise in bacteria (*E. coli*) look like?

Fluorescence depends on the transcriptional activity of the promoter

What does transcriptional noise in bacteria (*E. coli*) look like?

Assay noise in all *E. coli* promoters (~1'800) using flow cytometry

Some promoters in *E. coli* have high noise, some have low noise

Histograms of expression levels (100'000 cells measured for each of 1'800 promoters)

Some promoters in *E. coli* have high noise, some have low noise

Some promoters in *E. coli* have high noise, some have low noise

promoters categorised by function Energy met. (carbon)

Energy production

Carbon compound util.

Macromolecule biosynth.

Central intermediary met.

Macromolecule degrad.

Other

Building block biosynth.

low noise

Why?

Some promoters have high

DRIFT: noise because **selection**

doesn't care about noise

genetic drift

Some promoters have

SELECTION: high noise due to direct

selection for high noise

bet hedging

Some promoters have high CONSTRAINT: noise as a byproduct of **direct**

selection on *plasticity*

genetic correlation of plasticity and noise

Luise Wolf

Erik van Nimwegen

Use controlled selection in the lab to generate a null hypothesis

Synthetic 150bp random sequences of DNA

low-copy plasmid with random promoter							
	1	2	3	4	5	6	

We start with a diverse initial promoter library

Fluorescence (log10 arbitrary units)

We quickly evolve functional promoters

fluorescence

Fluorescence of single clones

Mean log fluorescence per cell

Noise is correlated with mean expression

Mean log fluorescence per cell

Mean log fluorescence per cell

Native E. coli promoters exhibit higher noise

Native *E. coli* promoters exhibit higher noise

Noise levels correlate with regulatory inputs

Noise levels correlate with regulatory inputs

Noise levels correlate with regulatory inputs

Noise levels correlate with regulatory inputs

Escherichia coli K12 MG1655 model laboratory strain since 1922

How does transcriptional control of "noisy" genes evolve?

- MG1655
- Natural isolate 1
- Natural isolate 2

How does transcriptional control of "noisy" genes evolve?

- MG1655
- Natural isolate 1
- Natural isolate 2

How does transcriptional control of "noisy" genes evolve?

A canonical example of noisy regulation

IPTG induction of the lac operon

Ozbudak et al. (2004) Nature Genetics

The lac operon structure

information for 100,000 cells

filter based on FSC and SSC

condition

flow cytometry

The K12 lac operon activity exhibits bimodality

E. coli K12 lac operon (placZ::GFP)Minimal glucose media6 hr induction with lactose analogue IPTG

strong bimodal shift

Noise levels differ between natural isolates

E. coli K12 lac operon (placZ::GFP)Minimal glucose media6 hr induction with lactose analogue IPTG

Lactose sensitivity differs between strains

B1 with native placZ sensitive

C-V with native placZ insensitive

What about cis effects?

What about cis effects?

- B1 SNPs
- C-V SNPs

What about cis effects?

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

The lac operon exhibits hysteresis

Ozbudak et al. (2004) Nature Genetics

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Fraction of lactose as carbon source at start of culture

Mike Sadowsky (Univ. Minnesota)

Daying Wen (Massey Uni)

Nikki Freed (Massey Uni)

Georgia Breckell (Massey Uni)

Diana Blank (Uni Basel)

Erik van Nimwegen (Uni Basel)

Chris Field (Uni Basel)

Frederic Bertels (Uni Basel)

FONDS NATIONAL SUISSE
SCHWEIZERISCHER NATIONALFONDS
FONDO NAZIONALE SVIZZERO
SWISS NATIONAL SCIENCE FOUNDATION

experimental confirmation

