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ow do novel functions evolve”?
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remove a gene that is conditionally
sential iIn minimal (M9) glucose media




Can this function re-evolve?
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How de we know if a gene is
conditionally essential in M9 glucose?

Hypothesis: there is an “underground” metabolism
of enzymes that can perform the functions of
other enzymes, but much less efficiently

How close are we to the limit of no growth?
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ppc - phosphoenolpyruvate carboxylase



ls a gene conditionally essential in M9 glucose”?




ls a gene conditionally essential in M9 glucose”?

All lineages with this deletion
recovered, all had a mutation in icd
(isocitrate dehydrogenase)




A gene is “essential” if no sustained growth
IS olbserved In the deletion strain
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We selected 87 different deletion strains
from the Kelo collection



Evolution starts through slow dilution
iInto minimal glucose media
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rich minimal
media . ’> media
time

- 5 replicate evolving lineages for each deletion genotype
-+ 435 lineages in total

- 5-fold dilutions for first ten transfers; 100-fold for next
18 transfers

- ~150 generations of evolution in total



We define “new function” as cases
IN which deletion strains can now
grow on minimal media




68 lineages evolved “new functions”
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Lag times were consistently longer
than the ancestor (no deletion strain)
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Number of deletion genotypes
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function for biosynthesis (odds ratio)




Genomic amplifications are common, often paralleled, and extensive
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How does novel function evolve?
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/ 10.66
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Neutral expectation using empirical matrix
(Petrov and Hershberg 2010):

66% of all mutations are GC: AT
83% of all mutations are transitions



How does novel function evolve?

Non-synonymous point mutations highly enriched:

Ka/Ks: 6.0

Intergenic point mutations highly enriched:

Ki/Ks: 1 1 8



Point mutations at intergenic sites are roughly
twice as likely to be selected for as point
mutations that change an amino acid

Intergenic indel are roughly 3.5 times as
likely to be selected for as coding indels
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The phenotypic effects of intergenic mutations
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The phenotypic effects of intergenic mutations
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Is this change meaningful?



Ancestor

1-mutant
neighbors

ACGTGCGACTGCATGAAAT

" ICICGTGCGACTGCATGAAAT

GCGTGCGACTGCATGAAAT
TCGTGCGACTGCATGAAAT

Ancestor

1-mutant
neighbors

|-ICGTGCGACTGCATGAAAT

ACIGTGCGACTGCATGAAAT
" AAIGTGCGACTGCATGAAAT
AGIGTGCGACTGCATGAAAT
ATGTGCGACTGCATGAAAT

Evolved

 Al-[GTGCGACTGCATGAAAT

*
ACGTGCGACTGCATAAAAT

calculate
binding
energy




Reverse cumulative
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30% of intergenic mutations
increase s70 binding by >10%

Only 3.5% of random mutations
do the same



What are the functions of the recruited genes?
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Transposon insertions are a frequent
mechanism of new function

3/5 of glyA lines

1S3

ibB rfaD rfaF rfa rfal aal rfaZ rfa¥Y rfa)

gpsA  grxC gpmM envC yibQ yibD tdh _ kbl

yibN
3.78 Mb 3.79 Mb 3.80 Mb

glyA: conversion of serine to glycine
kbl: conversion of threonine to glycine



HisB mutations are frequent in serB deletion lines
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Increases in mean expression level
are critical for evolving new functions
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Variation is inevitable if processes
iInvolve small numbers of molecules

o

In bacteria the average mRNA is
present at ~0.1 copies per cell

i% 7




What does transcriptional noise
in bacteria (E. coli) look like?
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/

quantify
fluorescence

E. coli cell Q

Fluorescence depends on the
transcriptional activity of the promoter




What does transcriptional noise
in bacteria (E. coli) look like?

Assay noise in all E. coli
promoters (~1’800) using
flow cytometry



Frequency

Some promoters in E. coli have
high noise, some have low noise

Histograms of expression levels
(100’000 cells measured for each of 1’800 promoters)

acid
resistance

GFP expre\é\é?o%ewﬁ.’)m‘



Some promoters in E. coli have
high noise, some have low noise

promoters of essential genes
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Some promoters in E. coli have
high noise, some have low noise

promot.ers Macromolecule biosynth.
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Some promoters have high
DRIFT : noise because selection
doesn’t care about noise

genetic drift

Some promoters have
SELECTION : high noise due to direct
selection for high noise

Some promoters have high
CONSTRAINT : noise as a byproduct of direct
selection on plasticity

bet hedging
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genetic Correlation of
plasticity and noise
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Use controlled selection in the
lab to generate a null hypothesis




Synthetic 150bp random
segquences of DNA
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Number of clusters

We start with a diverse
initial promoter library

cluster all sequences
with >95% identity
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226’038 clusters contain We start with a diverse

a single sequence initial promoter library
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We quickly evolve functional promoters
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Variance in log fluorescence per cell

Noise is correlated with mean expression

Mean log fluorescence per cell




Noise is correlated with mean expression

8 o @ native E. coli promoters
e e lab-evolved promoters
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Variance in log fluorescence per cell

Mean log fluorescence per cell



Excess noise

Excess noise is the variance above the lower bound
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Cumulative fraction of promoters
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Cumulative fraction of promoters
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Cumulative fraction of promoters
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Noise levels correlate with regulatory inputs
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Noise levels correlate with regulatory inputs

lab-evolved promoters

E. coli promoters with O
known regulatory inputs

E. coli promoters with 1
known regulatory input

E. coli promoters with 2 or
more known regulatory inputs
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Cumulative fraction of promoters
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Noise levels correlate with regulatory inputs
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Cumulative fraction of promoters
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Escherichia coli K12 MG1655
model laboratory strain since 1922
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ML tree based on global alignment

of >700,000 sites

0.01




How does transcriptional control of “noisy” genes evolve?

B MG1655 glyQ

B Natural isolate 1
B Natural isolate 2




How does transcriptional control of “noisy” genes evolve?
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B Natural isolate 1
B Natural isolate 2




How does transcriptional control of “noisy” genes evolve?
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A canonical example of noisy regulation

IPTG induction of the lac operon

Ozbudak et al. (2004) Nature Genetics



The lac operon structure

] Dl lEl
lacl intergenic lacZ
crp crp
| lacl | ] m | lacl |
35 10
lacl Intergenic lacZ
88 bp 122 bp 70 bp
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The K12 lac operon activity exhibits bimodality

E. coli K12 lac operon (placZ::GFP)
Minimal glucose media
6 hr induction with lactose analogue IPTG

- cmpty
_ OuM

K12
strong bimodal shift



Noise levels differ between natural isolates

E. coli K12 lac operon (placZ::GFP)
Minimal glucose media
6 hr induction with lactose analogue IPTG

) empty L) empty L) empty
— OuM - OuM

K12 B1 C-V
strong bimodal shift weak bimodal shift weak monomodal shift



Kernel density

Lactose sensitivity differs between strains

== (0.2% glucose

== (0.2% glucose

== 0.1% glu/0.1% lac == 0.1% glu/0.1% lac

== (.2% lactose

— == (.2% lactose

0.2% glu/ 50 uM IPTG 0.2% glu /50 uM IPTG

B1 with native placZ

3 4 5 1 2 3 4 5

Log10 fluorescence (arbitrary units)

C-V with native placZ

sensitive Insensitive




What about cis effects?

] Dl lEl
crp 35 crp
_lacl ] B |_lacl |
lacl Intergenic lacZ
88 bp 122 bp 70 bp




What about cis effects?

5 B
Cl n &

lacl

intergenic lacZ

crp crp
-35 10 ‘
] B | lacl |

|_lacl | Thr->Thr
0O © O O O © o O @) @) QO 00 8 O O O @) ©
lacl Intergenic lacZ
88 bp 122 bp 70 bp
O B1 SNPs

© C-V SNPs




What about cis effects?

0.20glu
0.08glu 0.12lac
0.02giu 0.18iac
0.015¢glu 0.185lac
0.01giu 0.19iac
0.005¢glu 0.195lac
0.001glu C.129lac
0.20'ac

1 2 3 4
Log10 fluorescence (arbitrary units)




Log10 fluorescence (AU)

What about cis effects?

~| = 0.20glu
0.08glu 0.12lac
=== "0.02giu 0.18iac
=== (.015glu 0.185lac
- 0.01giu 0.19iac
0.005glu 0.185lac
0.001glu-6.1929lac
= (.20'ac




Log10 fluorescence (AU)

What about cis effects?

----------------------- pre-culture 0.2% glucose|---—---------------- 1

| | | | | | | |
0 0.6 09 0925 0.95 0975 0.995 1

Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

What about cis effects?

----------------------- pre-culture 0.2% glucose|----------------------o

| | | | | | | |
0 0.6 09 0925 0.95 0975 0.995 1

Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

What about cis effects?

pB1

pre-culture 0.2% glucose|---—------------mmmmme —

0 0.6

09 0925 0.95 0.975 0.995 1
Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

pre-culture 0.2% glucose

0 0.6

09 0925 0.95 0.975 0.995 1
Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

pre-culture 0.2% glucose

| |
0 0.6

09 0925 0.95 0.975 0.995 1
Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

pre-culture 0.2% glucose

0 0.6

09 0925 0.95 0.975 0.995 1
Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

pre-culture 0.2% glucose

| |
0 0.6

09 0925 0.95 0.975 0.995 1
Fraction of lactose as carbon source at start of culture



Log10 fluorescence (AU)

oK12 TSS -1

pre-culture 0.2% glucose|---—------------mmmmme —

0 0.6

| | | | | |
09 0925 0.95 0975 0.995 1

Fraction of lactose as carbon source at start of culture



The lac operon exhibits hysteresis

e

Green fluorescence

100
10

100

Extracellular TMG (LM)

Ozbudak et al. (2004) Nature Genetics




Log10 fluorescence (AU)

pre-culture 0.2% lactose
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experimental confirmation
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Log2 fluorescence of GFP

above background
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