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Virus

Host

Virus-host interactions 
modify the fate of cells on 
time scales similar to 
division times…

Infection and lysis leads to 
Lotka-Volterra like 
dynamics at the population 
scale…

Which scale-up to massive 
ecosystem effects when 
integrated over the global 
oceans.

The Problem of Scales in 
Quantitative Viral Ecology:

Linking Mechanism to 
Pattern

See: “Quantitative Viral Ecology: 
Dynamics of Viruses and Their 
Microbial Hosts” (2015). J.S. Weitz, 
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Viruses infecting microbes discovered and enumeration in ~70 years

1925

1946

1947

1979

What do marine viruses do?

1989

Félix d'HérelleFrederick Twort

It wasn’t always this 
way…

1915
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“We have found up to 2.5 x 108 virus particles per ml in 
natural waters… 103-107 times higher than previous 
reports.”

1989 - Numbers



“We report a genomic analysis of two uncultured
marine viral communities. Over 65% of the sequences were 
not significantly similar to previously reported sequences, 
suggesting that much of the diversity is previously 
uncharacterized.”

2002 - Diversity
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“An exciting advance in marine virology is the discovery 
of auxiliary metabolic genes (AMGs), which are phage-
encoded metabolic genes that were previously thought 
to be restricted to cellular genomes” – Breitbart (2012)
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“An exciting advance in marine virology is the discovery 
of auxiliary metabolic genes (AMGs), which are phage-
encoded metabolic genes that were previously thought 
to be restricted to cellular genomes” – Breitbart (2012)



Jover et al., 2014



Today:

What do we know and what can we 
learn about marine virus effects on 
community and ecosystem processes 
over

Time (part 1)

& 

Space (part 2)

11



Time (Part 1):

Quantifying the nonlinear 
dynamics of virus-microbe 
communities

what we know

12



Canonical concept: virus-microbe 
interactions lead to “Lotka-Volterra” 
dynamics

Bohannan & Lenski (1997)



Canonical concept: virus-microbe 
interactions lead to “Lotka-Volterra” 
dynamics

Bohannan & Lenski (1997)



However, natural virus communities are 
highly diverse

15

The marine sediment sample 
contained between 10,000 and 1 
million viral genotypes.

- Rohwer and Edwards, Nature 
2005.

On estimation problems see:
Haegeman, et al. ISME J 2013

It seems likely that viral sequence 
space, while large, is unlikely to 
approach the two billion genes 
estimated from 14 genomes a decade 
ago.

- Ignacio-Espinoza, Solonenko & 
Sullivan, Curr Opp Virology, 2013



How to characterize who infects whom…

• Collect bacteria and phages for host-phage typing 
studies, from the environment, or from an experiment.

• Use spot assays to see “who infects whom”

Petty et al. (Microbiology, 2006)



An example dataset: Miklic A. and Rogelj I. (2003)



An example dataset: Miklic A. and Rogelj I. (2003)



Examine 
patterns at a 
large scale

Metaanalysis
• 38 studies
• >12,000 infections
• Diversity of taxa, 

habitats
• Spans host-phage 

typing, ecological 
sampling and 
experimental evolution

• Each matrix hand-
curated

Dr. Cesar Flores



Flores, Meyer, Valverde, Farr & Weitz (2011) Statistical structure of host-phage interactions. 
PNAS 108 :E288-E297

Nestedness found to be enriched in many cases, 
even when original format does not appear to be 
so.

Stenholm 2008 Stenholm 2008



Phage-bacteria infection networks are 
typically nested (on microevolutionary

scales)
21

Broadening host-range 
of infection appears 
common in both 
ecological and 
evolutionary studies.

Data: 
Weitz et al., Trends in Micro (2013)

Models: 
Jover, Cortez & Weitz, JTB (2013)
Thingstad et al., PNAS (2014)
Haerter, Mitarai and Sneppen, ISME J 
(2014)
Korytowski and Smith, Theor Ecol (2015)
Leung & Weitz, Phys Rev E (2016)



How can strains coexist given nested 
networks? 
aka – the problem of overlapping niches

22

Why doesn’t the most resistant 
host outcompete the rest ? 



How can strains coexist given nested networks? 
aka – the problem of overlapping niches

23

Why doesn’t the most resistant 
host outcompete the rest ? 

Why isn’t the most specialist 
virus outcompeted by the rest 
?



Approach: use dynamic models of phage-bacteria 
communities to predict potential modes of 

coexistence
24

Dr. Luis Jover



Approach: use dynamic models of phage-bacteria 
communities to predict potential modes of 

coexistence
25

Similar to “Kill-the-Winner” 
models…

Host Viru



Approach: use dynamic models of phage-bacteria 
communities to predict potential modes of 

coexistence
26

Similar, except that 
cross-infection is 
structured…

Infection Network

==M



Initial results: 
dynamics can differ given the same infection network
27

Both communities have 2 viruses, 2 hosts, and a nested 
network…

Community A: 
1 virus and 1 host coexist

Community B: 
2 viruses and 2 hosts coexist

The strains trade-off in 
life history traits

Bacteria: defense vs. growth
Viruses: virulence vs. host 
range



Coexistence occurs via a stable fixed point or 
oscillations when trade-offs are satisfied

Is there evidence for such trade-offs?
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Trade-offs linking life history rates and infection 
ranges

Host tradeoff: 
growth rate vs. resistance 
(sometimes)

Viral tradeoff:
fitness vs. host range 
(sometimes)



But are nested infection networks common at 
larger, marine scales?

Moebus and Nattkemper
(Helgol Meeresunters, 1981)

• Bacteria and phages 
collected at 48 different 
stations in the Atlantic 
Ocean.



Phage-host networks are modular at large-
scales (and nested within a “module”)

31

Flores, Valverde & Weitz, ISME J, 2013



Summary thus far…

 Tradeoffs facilitate coexistence of viruses and 
their hosts.

 Abundance and resistance are not 
necessarily correlated.

 Nestedness and tradeoffs do not need to be 
“perfect” for coexistence

 Modular networks can also give rise to 
persistent diversity.

Further reading:
Jover, Cortez & Weitz, J. Theor. Biol., 332: 65-77 (2013); Thingstad et al., 
PNAS (2014); Jover, Flores, Cortez & Weitz, Scientific Reports (2015)



Time (Part 1):

Quantifying the nonlinear 
dynamics of virus-microbe 
communities

what can we learn?

33



Inferring network interactions from time-
series

host + virus time-series
via metagenomic 

sampling

interaction network
(cannot directly observe in 

situ)

“forward problem”

“inverse problem”

Existing, widespread approaches: correlation-based
More recently: model-based (regression)

34



Inferring network interactions from time-
series
in practice

35



The (underappreciated) problem with 
correlation-based inference

36
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The (underappreciated) problem with 
correlation-based inference
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The (underappreciated) problem with 
correlation-based inference
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viruses

ho
st

s
viruses viruses

in silico
dynamics

raw correlation weighted correlation

Correlation need not 
recapitulation 
interaction!



Model-based inference:
a principled alternative

39



Model-based inference:
a principled alternative

40



Model-based inference:
a principled alternative

41



Model-based inference:
a principled alternative

42

Measured per-
capita changes in 
viral densities

Measured per-
capita changes in 
host densities

Cross-infection
network 
(unknown)

Viral decay
rates
(unknown)



Inference as an “optimization” problem, i.e., 
finding the best network & traits to fit the 
observed dynamics.

43

Measured per-
capita changes in 
viral densities

Measured per-
capita changes in 
host densities

Cross-infection
network 
(unknown)

Viral decay
rates
(unknown)

Convex optimization (cvx)



Model-based inference a step towards including theory 
in the pipeline of discovery of environmental cross-
infection

Features

• Uses model, rather than correlation, 
based approach for inference

• Leverages densities from 
metagenomes.

• Multiple experiments can be 
combined.

Challenges

• Diversity
• Spatiotemporal scale
• Other modes of infection
• Experimental tests ongoing

44

Jover, Romberg & Weitz (2016) Roy. Soc. Open Science. 
Inferring phage-bacteria infection networks from time-
series data 

Coenen & Weitz (in prep) The limits to infection inference 
given correlation based approaches



Space (Part 2):

Quantifying the large-scale 
properties of virus-microbe 
communities

what we know

45
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“We have found up to 2.5 x 108 virus particles per ml in 
natural waters… 103-107 times higher than previous 
reports.”

1989 - Numbers



1996 – 2012 – More 
Numbers
>5000 virus & host samples

Wigington et al, Nature Microbiology (2016) & available at bioRxiv

C. Wigington NIMBioS Working Group, 
Corina Brussaard, Jan Finke



1996 – 2012 – More 
Numbers
>5000 virus & host samples

1:1

100:1

Wigington et al, Nature Microbiology (2016) & available at bioRxiv



Viruses and large-scale patterns in the global oceans

49

We find substantial variation in the virus to 
microbial cell ratio, approximately 2-orders 
of magnitude.

The variation in virus-to-microbe 
abundances is poorly described by a 10:1 
model.

Instead, large variations are typical!



How do 
emergent virus-
to-microbe 
relationships 
vary in distinct 
ocean sampling 
regimes?
1. Analyze each marine 
survey separately.

2. Assess the relationship 
between virus and 
microbial cell abundances.



How do 
emergent virus-
to-microbe 
relationships 
vary in distinct 
ocean sampling 
regimes?
1. Analyze each marine 
survey separately.

2. Assess the relationship 
between virus and 
microbial cell abundances.

3. Power-law relationships 
tend to have scaling 
exponents <1

4. In general, the virus-to-
microbe ratio decreases 
with increasing microbial 
cell, rather than remaining 
fixed. See related work in Knowles et al. Nature (2016) & 

Parikka et al. Biol. Reviews (2016)



A maximum likelihood approach: applied 
to the global oceans virus-microbe dataset

Constant variance model –
the spread in virus densities is 
independent of microbial 
densities

Variable variance model – the 
spread in virus densities 
increases with microbial 
densities

AIC = 4130 (better support)AIC = 4682

B. Cael Barry Stephen Becket

Challenges for the field:

1. Fewer viruses per microbe as 
microbes increase in abundance.

2. Virus-microbe profiles of surface 
environments are more dissimilar 
than deep environments.



Space (Part 2):

Quantifying the large-scale 
properties of virus-microbe 
communities

what can we learn?

53



What Mechanisms Can Explain the Nonlinear Relationship
between Virus and Microbial Cell Abundances?

Potential Co-variates

Nutrients
Diversity
Relative importance of grazing
Resistance & specificity
Non-specific viruses (e.g., of 
eukaryotes)
Vesicles
Spatial structure
Lysogeny



What Mechanisms Can Explain the Nonlinear Relationship
between Virus and Microbial Cell Abundances?

Potential Co-variates

Nutrients
Diversity
Relative importance of grazing
Resistance & specificity
Non-specific viruses (e.g., of 
eukaryotes)
Vesicles
Spatial structure
Lysogeny

Finke et al. Viruses, 2017



What Mechanisms Can Explain the Nonlinear Relationship
between Virus and Microbial Cell Abundances?

Potential Co-variates

Diversity
Relative importance of grazing
Resistance & specificity
Non-specific viruses (e.g., of 
eukaryotes)
Vesicles
Spatial structure
Lysogeny

“Piggyback the Winner (PtW)”
Knowles et al., Nature, 2016



Piggyback-the-Winner: Concepts and 
Critiques

Piggyback-the-winner: Lysis 
suppressed and lysogeny enhanced 
at high productivity/densities, 
thereby causing decreases in VMR.



Piggyback-the-Winner: Concepts and 
Critiques

Piggyback-the-winner: Lysis 
suppressed and lysogeny enhanced 
at high productivity/densities, 
thereby causing decreases in VMR.

Contrasting Concept: Lysogeny
prevalent given low productivity and 
lysis elevated at high productivity, 
e.g., Arctic ocean study by Brum et 

   



PtW Claim 1 – In coral reef environments, systems with high 
microbial abundance have increasing relevance of lysogeny.

However, increasing “temperate-like” genes in the virome
could indicate high induction and decreasing relevance of 
lysogeny (to the extent that weak relationships are present, 
many of which are not).

Additional details and methods in:
Weitz, Beckett, Brum, Cael & Dushoff.
Lysis, lysogeny, and virus-microbe ratios, biorXiv: 
051085



PtW Claim 2 – When increasing relevance of lysogeny is 
integrated into a dynamic model, then the virus-to-microbe 
ratio decreases with increasing microbial abundance.

However, there is no lysogeny in the PtW model. Rather, 
the PtW model is a lytic model where the lysis and viral 
release increases with increasing cell abundance.

Additional details and methods in:
Weitz, Beckett, Brum, Cael & Dushoff.
Lysis, lysogeny, and virus-microbe ratios, biorXiv: 
051085



PtW Claim 3 - Other models cannot explain this result, 
hence PTW is the likely mechanism underlying nonlinear 
VMRs in coral reefs and the global oceans.

However, multiple models – including “Lotka-Volterra” models –
can exhibit a declining VMR with increasing microbial cell 
abundances.  

Additional details and methods in:
Weitz, Beckett, Brum, Cael & Dushoff.
Lysis, lysogeny, and virus-microbe ratios, biorXiv: 
051085



My view:

We need better measurements and models of viral 
and microbial dynamics that can directly test 
mechanisms based on core principles of virus 
biology. 

In doing so, we may find that not all mechanisms 
and patterns are universal.  Different laws may 
emerge at different scales and in different oceanic 
regimes.

Taylor, Penington, and Weitz, Phys Biol (2016)






Weitz Group 
http://ecotheory.biology.gatech.edu

http://qbios.gatech.edu

Jover et al., J. Theor. Biol, 2013
Jover et al., Sci Reports 2015
Jover, et al., Roy. Soc. Open Sci, 
2016

Flores et al., PNAS, 2011
Weitz et al., Trends in Microbiology 2013
Leung & Weitz Phys Rev E, 2016

Follow us:

@joshuasweitz & @weitz_group (twitter)

weitzgroup.github.io (code, data, and information)

biorxiv.org & arxiv.org

Questions
?

Wigington et al. Nature Micro 201
Taylor, et al., Phys Biol, 2016
Weitz et al., biorxiv

Stenholm 2008 Stenholm 2008

Royal Society of Biology 
2016 Textbook Prize
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