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SXS, the Simulating eXtreme Spacetimes (SXS) project (http://www.black-holes.org)




Time Scales

Credit: Sam Wilson, U of Hawaii, J. Marine Education (2013)
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The Problem of Scales Iin
Quantitative Viral Ecology:
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Virus-host interactions
modify the fate of cells on
time scales similar to
division times...
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See: “Quantitative Viral Ecoloqgy:
Dynamics of Viruses and Their
Microbial Hosts” (2015). J.S. Weitz,
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It wasn’t always this
way...
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1989 - Numbers

Bergh et al., Nature 1989

“We have found up to 2.5 x 108 virus particles per ml in
natural waters... 103-107 times higher than previous
reports.”



2002 - Diversity

Scripps Pier Mission Bay
Hits to GenBank
Known Known 8
;A y (304) %
Unknown Unknown 2
(783) 569) &

“We report a genomic analysis of two uncultured

marine viral communities. Over 65% of the sequences were
not significantly similar to previously reported sequences,
suggesting that much of the diversity is previously
uncharacterized.”



Luke R. Thompson et al. PNAS

2011;108:16147-16148

“An exciting advance in marine virology is the discovery
of auxiliary metabolic genes (AMGSs), which are phage-
encoded metabolic genes that were previously thought
to be restricted to cellular genomes” — Breitbart (2012)



™. FORTERRE Patrick @PatrickForterre - 11h
; Our first bioRxiv paper: smart viruses encoding ribosomal proteins (not
ribosomes!) biorxiv.org/cgi/content/sh... ... #biorxiv_micrbio

— Viruses modulate ecosystems by directly altering host
‘ - ‘ |' metabolisms through auxiliary metabolic genes, which
S are obtained through random sampling of the host gen...

biorxiv.org
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“An exciting advance in marine virology is the discovery
of auxiliary metabolic genes (AMGSs), which are phage-
encoded metabolic genes that were previously thought
to be restricted to cellular genomes” — Breitbart (2012)

Numerous cultivated and uncultivated viruses enco...



Viruses of Autotrophs
autotrophs
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Today:

What do we know and what can we
learn about marine virus effects on
community and ecosystem processes
over

Time (part 1)
&

Space (part 2)



Time (Part 1):
Quantifying the nonlinear
dynamics of virus-microbe

communities

what we know



Canonical concept: virus-microbe
Interactions lead to “Lotka-Volterra”
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Canonical concept: virus-microbe
Interactions lead to “Lotka-Volterra”
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However, natural virus communities are

highly diverse

b Mumber of viral genotypes \

The marine sediment sample
contained between 10,000 and 1
million viral genotypes.

- Rohwer and Edwards, Nature
2005.

On estimation problems see:
Haegeman, et al. ISME J 2013

Chao-1: 456 469 PCs

It seems likely that viral sequence
space, while large, is unlikely to
approach the two billion genes
estimated from 14 genomes a decade
ago.

- Ignacio-Espinoza, Solonenko &
Sullivan, Curr Opp Virology, 2013



How to characterize who infects whom...

e Collect bacteria and phages for host-phage typing
studies, from the environment, or from an experiment.
e Use spot assays to see “who infects whom”

Petty et al. (Microbiology, 2006)



Miklic A. and Rogelj I. (2003)
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An example dataset



Miklic A. and Rogelj I. (2003)
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Examine
patterns at a
large scale

Metaanalysis

o 38 studies

e >12,000 infections

* Diversity of taxa,
habitats

e Spans host-phage
typing, ecological
sampling and
experimental evolution

« Each matrix hand-

R

Dr. Cesar Flores

35 — Synott 2009



Nestedness found to be enriched in many cases,

even when original format does not appear to be
SO.

Stenholm 2008

Stenholm 2008

Flores, Meyer, Valverde, Farr & Weitz (2011) Statistical structure of host-phage interactions.
PNAS 108 :E288-E297



Fllage-paclerlia imiector rnetworks aie
typically nested (on microevolutionary

scales)
o vl 7
o ° -
: _.l,;?,';;/{—- : Br(_)aden_lng host-range
e e N of infection appears
A SRS }g,g’,gf;/j:*— common in both
S XA ecological and
vv:\}y '\"?I'/ % . .
evolutionary studies.
Data:
Weitz et al., Trends in Micro (2013)
¥ Models:
= v Jover, Cortez & Weitz, JTB (2013)
Q0 " Thingstad et al., PNAS (2014)
= g Haerter, Mitarai and Sneppen, ISME J
g o Korytowski and Smith, Theor Ecol (2015)
T 2 Leung & Weitz, Phys Rev E (2016)
Hosts Phages



How can strains coexist given nested
networks?
aka — the problem of overlapping niches

Why doesn’t the most resistant
host outcompete the rest ?

Virus



How can strains coexist given nested networks?
aka — the problem of overlapping niches

Why doesn’t the most resistant
host outcompete the rest ?

Why isn’t the most specialist

virus outcompeted by the rest
?




Approach: use dynamic models of phage-bacteria
communities to predict potential modes of

coexistence
I

Host growth and competition

™~

Change of density of host 2

i el B w
i J

Virion release

Viral lysis

L

Change of density of virus j

P N Viral decay
dv; N A ~ =
d—tj = Mo, 3 H V= myV;

Dr. Luis Jover



Approach: use dynamic models of phage-bacteria
communities to predict potential modes of

coexistence

Host growth and competition

Change of density of host 2 - ~

— ( Z Hj\ ) Viral\lysis .
- T@‘Hi 1 — ! —ZJ\LJ%H@VJ;
7

dt K

Change of density of virus j

=
av;

- < '
Virion release Viral decay

I - ™ N
= > Mo, 3 H V= myV;

dt

ke ”

Similar to “Kill-the-Winner”
models...

ol 7

Elements of a theory for the mechanisms controlling abundance, diversity, and
biogeochemical role of lytic bacterial viruses m aquatic systems

1. Frede Thingstad
Department of Microbiology, University of Bergen, Jahnebakken 5. N-5020 Bergen. Norway
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Approach: use dynamic models of phage-bacteria
communities to predict potential modes of

coexistence
Host growth and competition
Change of c(lie;ity of host 2 - ( Z Hj \\ ) Virailysis \
i J I . A
i = T'L'Hi 1 — T — Zj: A[LJ(TDJH@‘/]

Change of density of virus j ..
e Y J Virion release

N

Viral decay

dV- N ’ h —~N—
Infection Network
- - 5
Similar, except that /i . é\ )
cross-infection is M=|1 110 0|5
structured... 1 1.0 0 0 2
\l1 0 0 0 0) :

5 4 3 2 1

Virus



Initial results:
dynamics can differ given the same infection network

Community A: Community B:
1 virus and 1 host coexist 2 viruses and 2 hosts coexist

The strains trade-off In
life history traits

Bacteria: defense vs. growth
Viruses: virulence vs. host
F‘Fam@e Time (hours)

Virus (virion/ml)
/ g A

Both communities have 2 viruses, 2 hosts, and a nested
network...



Coexistence occurs via a stable fixed point or
osclillations when trade-offs are satisfied

|

Host density
Viral density

antdlh ialaal bl
I“i il ‘“u t"‘« ‘\;";“‘l:" ': ‘“‘l}\' "”I '\".l"

Time

Is there evidence for such trade-offs?



Trade-offs linking life history rates and infection

ranges

Genomic island variability facilitates
Prochlorococcus—virus coexistence

Sarit Avrani' Omri Wurtzel? Itai Sharon [, Rotem Sorek? & Debbie Lindell”  doi 10 1038/ nature10172

By

g

g Virus:
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B podoviruses

|
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|

Host:
Cyanobacteria -
Prochlorococcus

Relative growth rate

" I)+&I]+*‘)+#I)+, ‘]+SI)++
l http://proportal.mit.edu
Strain

Host tradeoff:
growth rate vs. resistance
(sometimes)

Pleiotropic Costs of Niche Expansion

in the RNA Bacteriophage 06

Siobain Duffy,*"' Paul E. Turner* and Christina L. Burch'

Fitness on Original Host

DOT: 10.1534/genetics.105.051136
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Viral tradeoft:
fitness vs. host range
(sometimes)



But are nested infection networks common at
larger, marine scales?

Moebus and Nattkemper
(Helgol Meeresunters, 1981)

« Bacteria and phages
collected at 48 different 5 L
stations in the Atlantic 1 I P W
Ocean. e

Al

.. Water samples from 48 different locations gt
W, : - g

Fig. 1: S ource: (TO00 = 6618 pix 15} We ‘e scanne ed the origin isnur-:e of the study. Hows represents bacteria and columns phage
A filled circle represents a strong interaction while an un ﬁl! d circle a weak Lnteracucm_



Phage-host networks are modular at large-
scales (and nested within a “module”)

T I ———

lllllllllll

Hosts (286 nodes)

e e

Phages (215 nodes)

Flores, Valverde & Weitz, ISME J, 2013



Summary thus far...

7 Tradeoffs facilitate coexistence of viruses and
their hosts.

o Abundance and resistance are not
necessarily correlated.

P 4S8R ( 5%

71 Nestedness and tradeoffs do not need to be
“perfect” for coexistence

- )./ OB ( #)S%

o Modular networks can also give rise to

persistent diversity. - T ‘

Further reading:
Jover, Cortez & Weitz, J. Theor. Biol., 332: 65-77 (2013); Thingstad et al.,
PNAS (2014); Jover, Flores, Cortez & Weitz, Scientific Reports (2015)



Time (Part 1):
Quantifying the nonlinear
dynamics of virus-microbe

communities

what can we learn?



Inferring network interactions from time-
series

“forward problem”
B0 SP
AN~
GD “inverse problem”
Interaction network host + virus time-series
(cannot directly observe in via metagenomlc
Situ) sampllnc.

Existing, widespread approaches: correlation- based i
More recently: model-based (regression) , e B

5?




Inferring network interactions from time-
series
In_practice
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The (underappreciated) problem with
correlation-based inference

—~ ~10° /t\
= E
viruses <105 in silico 2 S
dynamicss 2100 -
1 0
" oy %% 5 10 0 5 10
-'(7') ‘__O time (days) time (days)
o 4 =
< 3
2 E

o




The (underappreciated) problem with

correlation-based inference
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hosts

The (underappreciated) problem with

correlation-based inference

3
viruses «10% in silico 8
dynamics:
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Density (particles/ml)

Model-based inference:
a principled alternative
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Model-based inference:
a principled alternative
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Density (particles/ml)

Model-based inference:
a principled alternative
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Model-based inference:
a principled alternative

—_
o

15000

10000

5000 Fo—=am

Density (particles/ml)
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network rates
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Inference as an “optimization” problem, I.e.,
finding the best network & traits to fit the

ﬂjserved dynamics.

original M

reconstructed M

8]
?
w

interaction strength

rel. error = 0.2

Measured per-
capita changes in
host densities

Measured per- e (7T = H
capita changes in W~ (*M m) (T)

viral densities

Cross-infection Viral decay
network rates
(unknown) (unknown)

o

Convex optimization (cvx)

Np,
Aln (V;(t ~
M - E M;; Hy(ty) — m;
i=1

= =) ()

subject to Mij >0,

minimize
(M7, )

2




Model-based inference a step towards including theory
In the pipeline of discovery of environmental cross-

Infection
Original Reconstruction
Features
Single Multiple
experiment experiments
-  Uses model, rather than correlation,
a . based approach for inference
i . » Leverages densities from
Nestedness = 0.34 Errorse. = 0.06 Errore: =001
metagenomes.
- - « Multiple experiments can be
Ll | !
Nestedness = 0.57 Errorse. = 0.24 Errore: =004 Cha”enges
* Diversity
e Spatiotemporal scale
Nestedness = 1.00 Errory.. = 0.27 Errore. =0.03 ° Other mOdeS Of InfeCtIOn

Jover, Romberg & Weitz (2016) Roy. Soc. Open Science.  Experimental tests ongoing
Inferring phage-bacteria infection networks from time-
series data

Coenen & Weitz (in prep) The limits to infection inference



Space (Part 2).
Quantifying the large-scale
properties of virus-microbe
communities

what we know



1989 - Numbers

Bergh et al., Nature 1989

“We have found up to 2.5 x 108 virus particles per ml in
natural waters... 103-107 times higher than previous
reports.”



1996 — 2012 — More
Numbers

50 -
3
2 o0- >100m
© <=100m
-
-50-

-100 0 100
Longitude

Wigington et al, Nature Microbiology (2016) & available at bioRxiv

Py

C. Wigington NIMBioS Working Group,
Corina Brussaard, Jan Finke



1996 — 2012 — More
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Wigington et al, Nature Microbiology (2016) & available at bioRxiv



Viruses and large-scale patterns in the global oceans

400

We find substantial variation in the virus to s
microbial cell ratio, approximately 2-orders o
of magnitude.

200
The variation in virus-to-microbe
abundances is poorly described by a 10:1
model.

100

o
|

Frequency

=
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16.03
WV

Instead, large variations are typical!
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200
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/N N
3.91 74.43
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Ratio of viral abundance to microbial abundance (on logyq scale)




How do
emergent virus-
to-microbe
relationships
vary in distinct
ocean sampling
regimes?

1. Analyze each marine

survey separately.

2. Assess the relationship
between virus and

microbial cell abundances.
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How do
emergent virus-
to-microbe
relationships
vary in distinct
ocean sampling
regimes?

1. Analyze each marine
survey separately.

2. Assess the relationship
between virus and

microbial cell abundances.

3. Power-law relationships
tend to have scaling
exponents <1

4. In general, the virus-to-
microbe ratio decreases
with increasing microbial
cell, rather than remaining
fixed.

BATS @— | I
ARCTICSBI 1 @ -
CASES03-04 @- i -
BEDFORDBASIN - @. -
USC MO —T1> | B
NORTHSEA2001 - @ B
KH04_5 =T |
GEOTRAGES SmE— | =
KHO05_2- T : .
RAUNEFJORD2000 @ l
STRATIPHYT1 4 S I = l
MOVE { <0 i |
GREENLAND2012 - .,\J[.;> I
GEOTRACES_LEG3 — [ . I
SOG ! T3 I
STRATIPHYT2 @ I
INDIANOCEAN2006{ & T == | I
NASB2005 { —_— I ;: I
FECYCLE1 ; m I
FECYCLE? | ——e== T e I
TABASCO —T T e T |
POWOW =TT == | |
0 0.25 0.5 0.75 i 1.25 180 400 200 0
Slope Frequency

See related work in Knowles et al. Nature (2016) &
Parikka et al. Biol. Reviews (2016)



A maximum likelihood approach: applied
to the global oceans virus-microbe dataset

B. Cael Barry Stephen Becket

_
Constant variance model — Variable variance model — the
the spread in virus densities is spread in virus densities
Independent of microbial increases with microbial
»densities ~densities
Challenges for the field: Pt
: : o7 .
Fewer viruses per microbe as Fﬂa
microbes increase in abundance. .
L
Virus-microbe profiles of surface
environments are more dissimilar
y than deep environments. 7

-

AIC = 4682

=3

AIC = 4130 (better support)



Space (Part 2).
Quantifying the large-scale
properties of virus-microbe
communities

what can we learn?



What Mechanisms Can Explain the Nonlinear Relationship
between Virus and Microbial Cell Abundances?

Potential Co-variates ws| B

| m—
Nutrients Wi I =
Diversity — = 2
Relative importance of grazing  weows| <o | .
Resistance & specificity e <2 < E
Non-specific viruses (e.g., of TR e ' D !
eukaryotes) ST e 1
Vesicles ) —— }
Spatial structure o] | |
Lysogeny I N B

Slope Frequency



What Mechanisms Can Explain the Nonlinear Relationship

between Virus and Microbial Cell Abundances?

Potential Co-variates s

o < —
Nutrients Wi I =
Diversity o] | -
Relative importance of grazing  weows| <o | .
Resistance & specificity e <2 < E
Non-specific viruses (e.g., of GEOTRAGES LEG0 o i
eukaryotes)
Vesicles ; ﬁ" Tt o F
Spatial structure i = 3. i3 ‘

Lysogeny

B 7
Env. Variables

Finke et al. Viruses, 2017

6 7
Env. Variables



What Mechanisms Can Explain the Nonlinear Relationship
between Virus and Microbial Cell Abundances?

Potential Co-variates

Diversity

Relative importance of grazing
Resistance & specificity
Non-specific viruses (e.g., of

eukaryotes)
Vesicles

Spatial structure
Lysogeny

“Piggyback the Winner (PtW)”
Knowles et al., Nature, 2016
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Piggyback-the-Winner: Concepts and

Critiques
_
4 Lysogeny
2
>
0
<
g
>
Lysis
>
Low High
Density/Productivity

Piggyback-the-winner: Lysis
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thereby causing decreases in VMR.
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PtW Claim 1 —

In coral reef environments, systems with high

microbial abundance have increasing relevance of lysogeny.

However, increasing “temperate-like” genes in the virome
could indicate high induction and decreasing relevance of
lysogeny (to the extent that weak relationships are present,

many of which are not).

R?-0.022

p=0489 o

Provirus-like Bootstrap

Microbes | reads Method 95% CI

Log Linear Pearson (-0.37,0.36)
Linear/Log | Linear/Log | Kendall (-0.13,0.46)
Linear/Log | Linear/Log |Spearman (-0.15,0.64)
Log Linear Robust - Bisquare | (-0.41,0.58)
Log Linear Robust - Hampel | (-0.78,0.57)
Log Linear Hobust - Huber (-0.95,0.49)

Additional details and methods in:

Weitz, Beckett, Brum, Cael & Dushoff.
Lysis, lysogeny, and virus-microbe ratios, biorXiv:

051085



PtW Claim 2 — When increasing relevance of lysogeny is
Integrated into a dynamic model, then the virus-to-microbe

ratio decreases with increasing microbial abundance.
_

However, there is no lysogeny in the PtW model. Rather,
the PtW model is a lytic model where the lysis and viral
release increases with increasing cell abundance.

mcirobial cell change

Py microbial growth lysis microbial mortality
dN - 7 N A~ ~ N
— —7"N(1 - N/K)—¢NP — AN
viral particle change viral release
= —A—  Vviral decay
av N =
— = NV —=— mV
dt bo K

Additional details and methods in:

Weitz, Beckett, Brum, Cael & Dushoff.

Lysis, lysogeny, and virus-microbe ratios, biorXiv:
051085




VMR, V*/N*

PtW Claim 3 - Other models cannot explain this result,
hence PTW is the likely mechanism underlying nonlinear
VMRs in coral reefs and the global oceans.

However, multiple models — including “Lotka-Volterra” models —
can exhibit a declining VMR with increasing microbial cell

3 3 3
10 "' "'... > " Lotka-Volterra 0.03 10 Knowles et al. (2016) 0.022 10
s 5 .
5 oot i .. . . . 0.02 ,
..
10 """ AT s e 0.025 ! . 0.018 ]0
. e .
* .. L) ’
. o) R T ..
. " : L
h -

*Z 0016 *Z
10" {11 =L oota 10"
bﬁ 0.012 bﬁ
o 1t 0015 o e,
100 f === === - - 2 TN - - - - - - 1 = o1 S0
- -
0.01
107} 107}
. 0.005
o = VMRx NOT0 . ot | —VMRo N 055 T4 2] = VMR N-0-69 .
10 3 4 5 6 7 8 10 3 4 5 6 7 8 10 3 4 5 6 7 8
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Microbial cell density, N* Microbial cell density, N* Microbial cell density, N*

Additional details and methods in:

Weitz, Beckett, Brum, Cael & Dushoff.

Lysis, lysogeny, and virus-microbe ratios, biorXiv:
051085




My view:

We need better measurements and models of viral
and microbial dynamics that can directly test
mechanisms based on core principles of virus
biology.

In doing so, we may find that not all mechanisms
and patterns are universal. Different laws may
emerge at different scales and in different oceanic

Q

Taylor, Penington, and Weitz, Phys Biol (2016)
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