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The de Sitter Swampland Conjecture

While string theory has provided tools to think about many
questions in quantum gravity, cosmologies resembling our own
remain inaccessible to controlled approximations in the theory.
Conceivably the observed big bang is not described by a
quantum theory of gravity or requires some still larger structure,
but it would seem more likely that this simply represents a
failure of our present collection of theoretical tools.
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Our universe appears to have entered a stage of exponential
expansion, well-described as a de Sitter solution of Einstein’s
equations. At a time shortly after the big bang, there is good
reason to think that the universe also went through a period of
exponential expansion. So de Sitter space seems likely to play
an important role in any understanding of our present and past
universe. The inflationary period lasted only for a brief moment;
our limited understanding of how de Sitter space might arise in
string theory would suggest that even our present de Sitter
universe is metastable.

Michael Dine, with Jamie Law-Smith, Shijun Sun, Yan Yu, Duncan WoodObstacles to Constructing De Sitter Space in String Theory



de Sitter Space and the Landscape

The notion of a cosmic landscape introduces another role for
spaces of positive cosmological constant (c.c.). In particular,
such a landscape might allow a realization of anthropic
selection of the c.c. , but would seem to require the existence of
a vast set of metastable, positive c.c. vacua.
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The De Sitter Swampland Conjecture

It has proven difficult to find explicit constructions of metastable
de Sitter space in string theory, and this led Obied, Ooguri,
Hirosi and Spodyneiko and Vafa to conjecture that that
metastable de Sitter space lies in the swampland of quantum
gravity. If true, this has potentially dramatic implications, the
nature of the currently observed dark energy, and implementing
the anthropic explanation of the c.c. Rather than address the
implications, though, we’ll look at the starting point for the
conjecture.
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One should first ask: what would it mean to construct de Sitter
space in string theory? In most constructions, one starts with
some classical solution of the equations of critical string theory.
These solutions invariably have moduli or pseudomoduli. Then
one adds features, such as fluxes, branes, and orientifold
planes which give rise to a potential for these moduli, and looks
for a local minimum with positive four-dimensional c.c.
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These attempts to construct de Sitter space generally raise two
questions. First, what is the approximation scheme that might
justify any such construction? Second, any would-be de Sitter
space found in this way is necessarily, at best, metastable:
inevitably there is a lower energy density in asymptotic regions
of the original moduli space. Quantum mechanically, the
purported de Sitter state cannot be eternal. It has a history; it
will decay in the future and must have been created by some
mechanism in the past. The quantum mechanics of this
process is challenging to pin down.
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In this talk, we will argue that already classically, the notion of
an eternal de Sitter space in string theory is problematic; small
perturbations near the de Sitter stationary point of the effective
action evolve to singular cosmologies.
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Two challenges to the search for metastable de
Sitter space in string theory

(1) One requires a small parameter(s) allowing a controlled
approximation to finding stationary points of an effective action.
Here one runs into the longstanding problem that without
introducing additional, fixed parameters (i.e., introducing
parameters not determined by moduli), would-be stationary
points in the potential for the moduli lie at strong coupling.
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Typically, attacks on this problem (and the question of de Sitter
space) exploit large fluxes (I’ll discuss KKLT later.). If there is to
be a systematic approximation, it is necessary that the string
coupling be small and compactification radii large at any
would-be stationary point found in this way. If the strategy is to
obtain inverse couplings and radii scaled by some power of
fluxes, it is also important that these fluxes (and possibly other
discrete parameters) can be taken arbitrarily large, without
spoiling the effective action treatment. Even allowing
uncritically for this latter possibility, we will see that it is quite
challenging to realize arbitrarily weak string coupling and large
radius, with positive or negative c.c.This point has been noted
by Junghans, Wrase and others.

Michael Dine, with Jamie Law-Smith, Shijun Sun, Yan Yu, Duncan WoodObstacles to Constructing De Sitter Space in String Theory



(2) If one finds such a stationary point, one must ask about
stability, beyond the requirement that the quadratic fluctuation
operator have a positive definite spectrum. De Sitter space
introduces new elements into the problem.
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In string theory, we are used to searching for suitable
background geometries and field configurations by requiring
that the evolution of excitations about these configurations is
described by a unitary S matrix. Classically, at least in a flat
background, this is the statement that any initial perturbation of
the system has a sensible evolution to some final perturbation.
Again, we will see that this requirement is problematic for any
would-be classical de Sitter stationary point in such a theory;
even if all eigenvalues of the mass-squared matrix (small
fluctuation operator) are positive, large classes of small
perturbations evolve to singular geometries.
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Overall, then, we will argue that we lack theoretical methods to
address, in any systematic fashion, the problem of constructing
de Sitter space in string theory, much as we lack the tools to
understand big bang or big crunch singularities in any
controlled approximation. The existence of metastable de Sitter
states may be plausible or not, but it is a matter of
speculation.The failure to find such states in any controlled
analysis appears, at least at present, inevitable.
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Searching for Stationary Points of an Effective
Action

After introducing branes and fluxes, typically one searches for
particular stationary points of the action with positive
cosmological constant, and asks whether the string coupling is
small and the compactification radii large at these points (e.g.
work of Andriot, Wrase).
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Even if one succeeds in finding particular solutions with
numerically small couplings and large compactification radii,
this, by itself, does not address the question of whether there is
a systematic approximation. The system with branes and fluxes
is not a small perturbation of the system without, and the range
of validity of the expansion in one is not related to that of the
other. If there is to be a systematic approximation of any sort,
one requires a sequence of such stationary points as one
increases the flux numbers; the would-be small parameters are
the inverse of some large flux numbers. For this discussion we
will assume that it makes sense to take such numbers
arbitrarily large.
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The goal is to find stable, stationary points of the action where
1 The string coupling is small.
2 All compactification radii are large.
3 The cosmological constant is small and positive.
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Study Type II theories in the presence of an Op plane (following
Andriot), and background geometry with metric

ds2 = gµνdxµdxν + ρ g0
IJ dy IdyJ . (1)

Here g0
IJ represents a background reference metric for the

compactified dimensions. gµν represents the metric of four
dimensional space-time, which we hope to be de Sitter. We
also include NS-NS 3-form and R-R q-form fluxes, H(n)

IJK , F (n)
q .

We focus on the two moduli: ρ and τ = ρ3/2 e−φ where φ is the
dilaton.
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The resulting action is:
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Call the fluxes Fi = ni , H3 = N3. To illustrate the issues, we’ll
take n4 � n2 � N3. For 3 ≤ p ≤ 7, solving for the minimum:

ρ2 = −1
3

(
n4

n2

)2

; τ2 =
2
3

n2
4

R6
. (2)

Negative ρ2 is not acceptable. But even if somehow ρ2 had
been positive, we would have had:

g2 =
ρ3

τ2 ∝ R6

(
n4

n3
2

)
; (3)

so the string coupling would not have been weak.
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In other cases, one finds these and other pathologies—AdS
rather than dS stationary points and instabilities. Searches
involving broader sets of moduli (Andriot, Wrase) seem to allow
at best a few isolated regions of parameter space where such
solutions might exist. Whether these might exhibit a sensible
perturbation expansion is currently an open question, but our
results above suggest that the combination is a tall order.
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The Challenge of Cosmological Solutions

String theory has had many dramatic successes in
understanding issues in quantum gravity. But one severe
limitation is its inability, to date, to describe cosmologies
resembling our own, which appear to emerge from a big bang
singularity or evolve to a big crunch singularity. This could
reflect some fundamental limitation; more likely, it reflects the
inadequacy of our present theoretical tools to deal with
situations of high curvature and strong coupling.
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For example, consider a pseudomoduli space where the
potential falls to zero for large fields in the positive direction. If
one starts the system in the far past with expanding boundary
conditions, then further in the past there is a big bang
singularity; if one starts with contracting boundary conditions,
there is a big crunch in the future (T. Banks and M.D.). These
high curvature/strong coupling regions are inevitable, despite
the system being seemingly weakly coupled through much of
this history.
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Figure: Metastable potential for a modulus, φ
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Are things better for an initial configuration at the metastable
minimum? If we start the system at the local minimum of the
potential, classically, it will stay there eternally. But might there
be small disturbances that drive the field to explore the region
on the other side of the barrier, exhibiting the pathologies
described above?
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In one presentation of de Sitter space:

ds2 = −dτ2 + cosh2(Hτ)
[
dχ2 + sin2 χdΩ2

2

]
. (4)

A homogeneous scalar field in this space, φ(τ), obeys

φ̈+ 3H
sinh(Hτ)

cosh(Hτ)
φ̇+ V ′(φ) = 0. (5)

Michael Dine, with Jamie Law-Smith, Shijun Sun, Yan Yu, Duncan WoodObstacles to Constructing De Sitter Space in String Theory



Consider, first, a potential which rises in all directions (no
metastability). For large positive τ , any perturbation of φ about
a local minimum damps; for large negative τ , the motion is
amplified as τ increases (it damps out in the past).
Correspondingly, in the far past and the far future, the field
approaches the local minimum. We would expect the same to
be true allowing for initially inhomogeneous configurations.
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Now for a potential that has a local minimum with positive
energy density, and that falls to zero for large |φ|, we might
expect that if we create a small, localized perturbation at some
(r0, τ0) this perturbation will damp out if τ0 � 0. But if τ0 � 0,
the perturbation will grow, possibly crossing over the barrier
while τ � 0. In this case, the emergent universe on the other
side of the barrier is contracting, and we might expect the
system to run off towards φ =∞, until the universe undergoes
gravitational collapse.
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Passing Over the Barrier Vs. Through the Barrier

We are interested in disturbances which lead to motion over a
barrier, rather than tunneling. We might expect, however, that
once the system passes over the barrier, its subsequent
evolution is not particularly sensitive to whether it passed over
the barrier or tunneled through it. The bubble, in either case,
quickly becomes relativistic, energy is proportional to t3,
dwarfing any difference in the energy of order the barrier height
at the time of bubble formation.
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We can develop an intuitive picture by treating a thin-wall
bubble and the radius of the bubble as a collective coordinate:
With

V (φ) = −1
2
µ2φ2 +

1
4
λφ4 + εφ+ V0.

For small ε, the minima of the potential lie at

φ± ≈ ±
√
µ2

λ
. (6)

We can define our bubble configuration, with radius R large
compared µ−1, as the kink solution of the one dimensional
problem,

φB(r ; R) =
φ+ − φ−

2
tanh

(
µ(r − R)√

2

)
+
φ+ + φ−

2
. (7)
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If R0(t) is slowly varying in time (compared to µ−1), then we
can write an action for R,

S =

∫
dt
∫

r2drdΩ

(
1
2

(∂tφB(r ; R))2 − (~∇φB(r ,R))2 − V (φB(r ,R))

)
(8)

= 4π
∫

dt

(√
2
3
µ3(R2Ṙ2 − 2R2) +

ε

3
R3

)
.

Correspondingly, the energy of the configuration is:

E(R, Ṙ) = 4π

(√
2
3

(R2Ṙ2 + 2R2 − 1
3
εR3)

)
≡ M(R)

2
Ṙ2 + V (R). (9)
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We have checked, numerically, that starting with a field
configuration corresponding to
φ(x , t = 0) = φB(r ; R), φ̇(x , t = 0) = 0, to the left of the barrier,
the bubble collapses. Starting slightly to the right, the wall
quickly becomes relativistic and expands.

For GN = 0, the system quickly evolves to resemble the critical,
Coleman-DeLuccia bubble. This is consistent with an intuition
that the energy of conversion of false vacuum to true is largely
converted into the energy of the wall. Indeed the solution
coincides with the critical bubble at large times.

So for GN sufficiently small, after a time the system will evolve
like the critical CDL bubble. So we can ask how the CDL bubble
behaves for a potential which falls asymptotically to zero.
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Consider the bubble evolution in the timelike region.

ds2 = −dτ2 + ρ(τ)2
(

dσ2 + sinh2(σ)dΩ2
2

)
, (10)

the equations for ρ and φ are:

d2φ

dτ2 + 3
ρ̇

ρ

dφ
dτ

+ V ′(φ) = 0 (11)

and

ρ̇2 = 1 +
κ

3

(
1
2

dφ
dτ

2
+ V (φ)

)
a2. (12)
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We might expect, for an exponentially falling potential, that the
potential is not important aymptotically. Then

ρ ∝ (τ − τ0)1/3, τ > τ0; ρ ∝ (τ0 − τ)1/3, τ < τ0. (13)

Also:

ρ̇

ρ
= ±

√
κ

6
φ̇. (14)
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So

d2φ

dτ2 ±
√

3κ
2
φ̇2 = 0. (15)

We look for a solution of the form

φ̇ = α(τ − τ0)−1, (16)

α =

√
2

3κ
. (17)

Plugging this back into the ρ̇ equation gives

ρ̇

ρ
= ±1

3
1

τ − τ0
, (18)

which is consistent with the expected (τ − τ0)1/3 behavior. So
we have a singularity in the past or the future.
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For numerical studies, we designed a potential with a local de
Sitter minimum that tends to zero for large φ

V (φ) =
1
2

e−φ + φ2e−φ
2
. (19)

We solve the equations for φ and ρ with φ0 taken to be not too
far from the local minimum, with dφ/dτ = 0, and with the
negative sign in the root of the ρ equation.
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Implications of the singularity

Our main concern with the singularity is whether it is an
obstruction to any sort of systematic analysis. If we have a
weak coupling, small curvature description of the system,
allowing a perturbative analysis, we expect to be able to write
an effective Lagrangian including terms of successively higher
dimension—higher numbers of derivatives—such as:

L =
√

g
(

1
GN
R+R2 +

1
M2R

4 + . . .

+(∂µφ)2 +
1

M4 (∂µφ)4
)
. (20)

If one tries to analyze the resulting classical equations
perturbatively, in the presence of φ̇ ∼ 1/(t − t0) and
R ∼ 1/(t − t0)2, at low orders, the terms in the expansion
diverge and the expansion breaks down. This is similar to the
phenomena at a big bang or big crunch singularity.
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Conclusions

We have argued, from two points of view, that one cannot
construct de Sitter space in any controlled approximation in
string theory. First, we have seen that even allowing the
possibility of arbitrarily large fluxes, it is very difficult to find
stationary points for which both the string coupling is small and
compactification radii are large, even before asking whether the
corresponding cosmological constant is positive or negative.
We have seen that typically when sensible stationary points
exist, even if formally radii are large and couplings small, higher
order terms in the expansions are not small.

Michael Dine, with Jamie Law-Smith, Shijun Sun, Yan Yu, Duncan WoodObstacles to Constructing De Sitter Space in String Theory



But our second obstacle seems even more difficult to surmount:
a set of small perturbations of any would-be metastable de
Sitter state, classically, will evolve to uncontrollable singularities.

This is not an argument that metastable de Sitter states do not
exist in quantum theories of gravity; only that they are not
accessible to controlled approximations. The problem is similar
to the existence of big bang and big crunch singularities; we
have empirical evidence that the former exists in the quantum
theory that describes our universe, but we do not currently have
the tools to describe these in a quantum theory of gravity.
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Observations on the KKLT Construction

KKLT invoke vacua with fluxes, but the small parameter is not
provided by taking all fluxes particularly large; rather, it arises
from an argument that there are so many possible choices of
fluxes that in some cases, purely at random, there is a small
superpotential. In other words, there is conjectured to be a vast
set of (classically) metastable states of which only a small
fraction permit derivation of an approximate four-dimensional,
weak coupling effective action. Perhaps this is evidence that if
in some cosmology one lands for some interval in such a state,
the state can persist for a long period. But a complete
description of such a cosmology is beyond our grasp at present.
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Approximately Supersymmetric States in a
Landscape

In considering the cosmic landscape, the lack of weak coupling
suggests thatlong-lived de Sitter vacua will be very rare. This is
particularly problematic for the state we currently inhabit. We’d
have to be lucky (anthropic? but why not decay tomorrow?)
unless protected by some degree of approximate
supersymmetry. The breaking of supersymmetry would almost
certainly be non-perturbative in nature; searches for concrete
realizations of such states (as opposed to statistical arguments
for the existence of such states, along the lines of KKLT) would
be challenging.
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Ultimately, at a quantum level, reliably establishing the
existence of metastable de Sitter space appears to be a very
challenging problem. One needs a cosmic history, and it would
be necessary that this history be under theoretical control, both
in the past and in the future. As a result, the significance of
failing to find stationary points of an effective action describing
metastable de Sitter space is not clear. We have seen that even
thought of as classical configurations, there are questions of
stability and obstacles to understanding the system eternally,
once small perturbations are considered. We view the question
of the existence of metastable de Sitter space as an open one.
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We can make this latter statement more precise. If we write:

φ(r , t) = φcr(t , r) + χ(t , r), |χ| � φcr, (21)

where φcr is the critical bubble solution, then

(∂2 + m2(r , t))χ = 0. (22)
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Here m2 is essentially a θ function, transitioning between the
mass-squared of χ in the false and true vacua. Since the
bubble wall moves at essentially the speed of light, and
undergoes a length contraction by t ∼ γ, we have that

m2(t , r) ≈ m2(t2 − r2) (23)

and the χ equation is solved by

χ =
1
r
χ(t2 − r2). (24)

So the amplitude of χ decreases with time, and the energy
stored is small compared to that in the bubble wall.
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Tunneling with GN = 0

Consider, first, the bounce solution without gravity. We consider
a potential, V (φ), with local minima at φtrue, φfalse, where
V (φfalse) > V (φtrue). Starting with the field equations,

2Φ + V ′(φ) = 0, (25)

for points that are space-like separated from the origin (the
center of the bubble at the moment of its appearance), we
introduce ξ2 = r2 − t2, in terms of which

d2φ

dξ2 +
3
ξ

dφ
dξ
− V ′(φ) = 0. (26)

This is the Euclidean equation for the bounce.
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For points that are time-like separated, calling τ2 = t2 − r2,

d2φ

dτ2 +
3
τ

dφ
dτ

+ V ′(φ) = 0. (27)

These equations are related by ξ = iτ .
On the light cone, ξ = τ = 0, we have dφ/dτ = dφ/dξ = 0, and
we have to match φ(0) = φ0. In the tunneling problem [?], φ0 is
determined by the requirement that φ→ φfalse as ξ →∞; this
can be thought of as a requirement of finite energy relative to
the configuration where φ = φfalse everywhere.
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Classical perturbations of the false vacuum with
GN = 0

Without gravity, we might consider starting the system in the
false vacuum and giving it a “kick” so that, in a localized region,
the system passes over the barrier. On the other side, the
system looks like a bubble, but not of the critical size. We might
expect that the evolution of the bubble, on macroscopic
timescales, is not sensitive to the detailed, microscopic initial
conditions. For a thin-walled bubble, for example, we can think
of configurations where at time t = 0, one has a bubble of
radius R0, inside of which one has true vacuum, outside false
vacuum, and a transition region described by the kink solution
of the one dimensional field theory problem with nearly
degenerate minima.
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Behavior of the disturbance with small GN

Consider the same system, now with a small GN . Again, our
disturbance, after a short period of time, approaches the critical
(GN = 0) bubble. At larger time, it will then agree with the
Coleman-De Luccia solution, including the small effects of
gravity.
As we will see in the next section, for the asymptotically falling
potential, with expanding boundary conditions, the evolution of
the configuration is non-singular. But with contracting boundary
conditions, one encounters, as expected, a curvature
singularity.
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Behavior of the Bounce with Asymptotically
Falling Potential

We have argued that, independent of the microscopic details of
the initial conditions, in the case of a disturbance that connects
two metastable minima of a scalar potential, the large time
evolution of an initial disturbance that crosses the barrier is that
of the critical bubble, in the limit of small GN . We expect that
the same is true for a potential that falls asymptotically to zero.
Once more, the underlying intuition is that at late times, the
energy released from the change of false to true vacuum
overwhelms any slight energy difference in the starting point.
So we expect the solution to go over to φ(τ). So in this section,
we will focus principally on the behavior of the critical bubble,
φ(τ).
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Field evolution with small GN

For small but finite GN , there is a long period where
GN × T00 × τ2 � 1, gravitation is negligible, and the picture of
the previous section of the flat-space evolution of the bubble (or
disturbance) is unaffected. For a vacuum bubble in de Sitter
space, gravitational effects become important, for fixed
r � H−1, for example, only once t ∼ H−1. Provided the bubble
has evolved to a configuration approximately that of the critical
bubble, we can take over the critical bubble results (with
gravity).
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For 3 ≤ p ≤ 7 and choosing T10 = 1, R6 ∼ 1, we can drop the
T10 term because the R6 term will dominate. We can attempt to
find large τ and ρ by turning on F2 = n2 and F4 = n4 (other
combinations of fluxes give similar results). Relevant terms:

−τ−2ρ−1R6 +
1
2
τ−4

(
n2

2ρ+ n2
4ρ
−1
)
. (28)

Differentiating with respect to ρ and τ , for n4 � n2 � 1

ρ−2R6 +
1
2
τ−2

(
n2

2 − n2
4ρ
−2
)

= 0 (29)

and

ρ−1R6 − τ−2
(

n2
2ρ+ n2

4ρ
−1
)

= 0. (30)
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Behavior of the equations for large τ

Before describing our numerical results, it is helpful to consider
some crude approximations which give insight into the behavior
of the system. In the timelike region with ξ = iτ , the equations
for φ and the scale factor, ρ, are:

d2φ

dτ2 + 3
ρ̇

ρ

dφ
dτ

+
dU
dφ

= 0, (31)

ρ̇ = ±

√
−1 +

κ

3
ρ2
(

1
2
φ̇2 + U(φ)

)
. (32)
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