
Thermal Dark Energy
and Other String Candidates

Susha Parameswaran

University of Liverpool

KITP Conference | UV Meets the IR: Effective Field Theory Bounds from QFT to String Theory
13th October 2020

based on work with:
Ed Hardy Phys.Rev. D101 (2020) no.2, 023503

Yessenia Olguín, Gianmassimo Tasinato & Ivonne Zavala JCAP 1901 (2019) no.01, 031

Bruno Bento, Dibya Chakraborty & Ivonne Zavala 2005.10168 [hep-th] and 2011.XXXX

1



Plan

Given the difficulties in obtaining controlled de Sitter vacua in string
theory, are there simple Dark Energy alternatives?

I Quintessence from a runaway string modulus
I Thermal Dark Energy

What do they tell us about the String Landscape vs. Swampland?
What are their observational signatures?

eBOSS 2014-2020, SuMIRE 2014-2024, DESI 2019-2024, LSST 2020-2030, Euclid 2020-2026, WFIRST 2024-2030
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Quintessence from a Runaway String Modulus?
Olguin-Trejo, Parameswaran, Tasinato & Zavala ’18; Bento, Chakraborty, Parameswaran & Zavala ’20

I Whilst metastable dS string vacua are hard to find, runaway
potentials are ubiquitous in string compactifications e.g. moduli
often susy flat directions K = −n log(Φ + Φ̄) and W = Ae−aΦ:

Dine & Seiberg ’86
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I Might expect a simple thawing quintessence, with modulus φ
frozen at the tail of V (φ) by Hubble friction, leading to effective Λ?

I If modulus hidden and sequestered from visible sector - avoid
fifth-forces and time-variation of fundamental constants...
e.g. Berg, Marsh, McAllister, Pajer ’10; Aparicio, Cicoli, Krippendorf, Maharana, Muia, Quevedo ’14; Acharya, Maharana, Muia ’18

I But V (φ) above too steep to source quintessence:
εV → 4

n a2φ2 as φ→∞.
I φ can be frozen by Hubble friction but not simultaneously

dominate the energy density of Universe... unless initial
conditions are fine-tuned to hilltop (note unstable dS)
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Quintessence No-Gos in Supergravity
We’ve seen non-perturbative runaway string modulus
K = −n log(Φ + Φ̄) has V (φ) too steep to source quintessence.

Similar results for other classes of string moduli, taking leading
contribution to W at the tail to be perturbative or non-perturbative.

Model V (φ) > 0 and εV < 1 at tail
bulk/fibre modulus

K = −n log(Φ + Φ̄) , W = W0 + Ae−aΦ no-go
K = −n log(Φ + Φ̄) , W = W0 + AΦp no-go

deformation modulus
K = k0 + |Φ|2n

k1
, W = W0 + Ae−aΦ no-go

K = k0 + |Φ|2n

k1
, W = W0 + AΦp p = n

blow-up modulus
K = k0 + (Φ+Φ̄)2n

k1
, W = W0 + Ae−aΦ no-go

K = k0 + (Φ+Φ̄)2n

k1
, W = W0 + AΦp p = n

K = −n log(Φ + Φ̄) and V = V0φ
−p ⇒ slow-roll for p2/n . 1, but 4D

sugra constrains V0 in terms of p and n.
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Thermal Dark Energy
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Thermal Dark Energy Hardy & Parameswaran ’20

Although status of Metastable dS vacua is unknown, we know
Unstable dS vacua exist in String Theory and (we believe) in Nature.

Elephant in the Room by Banksy

High T effects transform the Unstable dS in the Higg’s Mexican Hat
potential to a metastable dS.... no accelerated expansion as V (H)
dominated by ρrad ... consider a light hidden sector where thermal
effects generate a metastable dS that dominates Universe and drives
accelerated expansion. 5



Light Hidden Sectors at Finite Temperature
I String models can have hidden sectors, with rich internal

dynamics but only weakly coupled to visible sector.

I Suppose light hidden d.o.f’s, still in internal thermal equilibrium
today, ΓI = n〈σv〉 � H since reheating⇒ ξh ≡

(
Th
Tv

)
� O(1) Tv

Mpl

I A light scalar field (matter or modulus) with non-zero vev, e.g.:

V (φ) = λφ4 −
m2
φ

2
φ2 + C

with φ1 ≡ 〈φ〉min = mφ/(2
√
λ) and 〈V 〉min = 0 for C = m4

φ/(16λ).
I Higgs-like interactions with other states in the hidden sector, e.g.:

yiφψ̄iψi and λaφ
2χaχa

i.e. effective masses mψi (φc) = yiφc and Mχa (φc) =
√
λaφc .

I At finite temperature, plasma interacts with homogeneous scalar
field background – which itself determines the masses and
interactions of particles⇒ thermal potential for φ.
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Thermal Dark Energy cf. Thermal Inflation, Lyth & Stewart ’95

0 2 4 6 8 10 12 14
0

2.× 10-121

4.× 10-121

6.× 10-121

8.× 10-121

1.× 10-120

ϕ

V(ϕ,0)

I ForT � mψi (φc),Mχa (φc) finite temperature effects contribute to
potential (exponentially suppressed at low temperatures):

Vtot (φ,Th) = λφ4 −
m2
φ

2
φ2 +

m4
φ

16λ
+bT 2

h φ
2

e.g. b = 1/12 for single hidden Dirac fermion with y = 1.
I For Th � mφ√

2b
a local min at φ = 0 is induced.

For also Th � φ1 φ = 0 is a global min.
I Shift from φ = φ1 to φ = 0 induces vacuum energy:

V (0,Th) =
m4
φ

16λ
see also Chung & Long ’11
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Dark Radiation and Dark Energy
Hidden sector contributes to Einstein’s equations in two ways:
I Dark radiation:

ρr hid =
π2ghT 0

h
4

30
with T 0

h < T 0
v

I Dark potential energy due to thermally shifted 〈φ〉:

ρDE = V (0,Th) =
m4
φ

16λ

For Thermal Dark Energy we need:
I potential energy (ρDE ≈ (2.3meV )4) larger than radiation energy

(T 0
v ≈ 0.24meV ) today:

m4
φ

16λ
>
π2gv T 0

v
4

30

plus T 0
h >

mφ√
2b

leads to hierarchy mφ � φ1, mφ � T 0
h � φ1, λ� 1.

E.g. for Th ∼ 3× 10−5eV , mφ ∼ 1× 10−6eV and λ ∼ 2× 10−15 we
would have Vvac ∼ (2meV )4 and w = −1 today.

8
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ρr hid =
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4

30
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h < T 0
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I Dark potential energy due to thermally shifted 〈φ〉:
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Other phenomenological constraints
I ∆Neff constrains temperature of hidden sector:

Neff ≈ 3 +
4
7

gh
∗

(
Th

Tv

)4

then Neff . 3.18 from BBN⇒ T 0
h . 0.3T 0

v for gh
∗ = 1 + 7

8 4.

I Metastable dS decays through nucleation of bubbles of true
vacuum: need Γnucl � H4

0 , where:

Γ3 = T 4
h

(
S3

2πTh

)3/2
e−S3/Th or Γ4 = v4

(
S4

2π

)2
e−S4

0 10 155
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V (ϕ, Th)
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S3/Th

S4

Γdecay =H0
4

No
barrier

2 3 4 5 6

102

103

104

105

Th /mϕ

B

For mφ = 10−6eV vacuum decay is negligible until Th close to
when metastable minimum disappears at NE ∼ 4.
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A Viable, Robust Parameter Space

For V (φ,0) = λφ4 − 1
2 m2
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Note m2
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Observational Signals

Fifth force

ΔNeff

Allowed

10-14 10-12 10-10 10-8 10-6 10-4
10-14

10-12

10-10

10-8
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A/eV

Fifth force

ΔNeff

Allowed

10-14 10-12 10-10 10-8 10-6 10-4
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10-4

10-2

1

mphys /eV

dg

Portal interactions between visible and thermal dark energy sectors,
e.g.

−(Aφ+ gφ2)|H|2 and dg
β3√

2g3Mpl
φF a

µνF aµν

I A,dg constrained mainly by fifth forces.
I g mainly constrained by requirement that hidden sector stays

cool to keep ∆Neff small⇒ g < 10−10ξh.

Viable models with interaction strengths not much smaller than M−1
pl !

Visible sector loops⇒ m2
φ ∼ gΛ2

UV and φ tadpoles L ∼ AΛ2
UVφ,

dgΛ4
UVφ/Mpl – couplings accessible to fifth forces require fine-tuning.
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Fine-tuning
I ∆Neff puts upper bound on Th and thus UV sensitive mφ and λ,

whilst hidden sector loops drive λ to O(1).

I Embed in susy model Φ = (φ, η) and Ψ = (χ, ψ):

W = (mψ − Φ)Ψ2 and Vsoft = m2
φ|φ|2 + m2

χ|χ|2

with mφ,mχ � mψ gives:

V = |χ|4 + |2mψχ− 2φχ|2 + m2
φ|φ|2 + m2

χ|χ|2 and

Lf ⊃ −(mψ − 〈φ〉)ψ2 + 2〈χ〉ηψ

suppressed hidden susy breaking scale⇒ superpotential and
mass hierarchy protected by susy.

I Finite temperature effects favour 〈φ〉 that minimizes fermions
masses – for Th � mφ, 〈φ〉 shifts to 〈φ〉 = mψ with dark energy:

ρDE =
1
2

m2
ψm2

φ

I Stability against loops from visible sector states and string states
– sequestering of susy breaking via extra dimensions? e.g. for
m3/2 & 10−8GeV from low-scale gauge mediation, need
msoft . 10−7m3/2 – much easier than for quintessence.
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Summary and Outlook
I Existence or not of metastable dS vacua and/or quintessence in

string theory remains an open question.
I Light hidden dark sector with finite temperature effects explains

Dark Energy with w = −1 consistently with Swampland
conjectures.

I Hidden sector susy can help with fine-tuning, and much less
sequestering needed than for quintessence: m ∼ 10−6eV vs.
m ∼ 10−33eV

I Potentially observable via ∆Neff and fifth forces.
I DE epoch will end when Th ∼ mφ with first order phase transition

towards true vacuum, and conversion to hidden sector radiation,
matter and gravitational waves.

I Multiple Thermal DE eras may realise the EDE scenario to
explain the H0 tension, leaving gravitational wave signatures as
each TDE sector transitions to global minimum...PBHs?

I Embed in explicit string constructions and understand finite
temperature effects vs swampland?
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