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Review: differential forms for currents
Conserved current: ∂μ jμ = 0

Jμ1⋯μd−1
= εμ1⋯μd

jμd and ∂μ jμ = 0 ⇒ dJ = 0.

Conserved currents ⟺ Closed forms (related by ★)

Gauging a conserved current:

Aμ jμ ⇔ A ∧ Jd−1

Equation of motion:

Total charge:
Q = ∫ dd−1x j0 ⇔ Q = ∫Md−1

J

∂μFμν = jν ⇔ d(⋆F) = J

A current is gauged when it is exact, not just closed. 
Gauging removes currents from the cohomology.

Rewrite in terms of ( )-form : d − 1 J = ⋆ j



Review: differential forms for currents
Conserved current: ∂μ jμ = 0
Rewrite in terms of ( )-form : d − 1 J = ⋆ j

Jμ1⋯μd−1
= εμ1⋯μd

jμd and ∂μ jμ = 0 ⇒ dJ = 0.

Conserved currents ⟺ Closed forms (related by ★)

Gauging a conserved current:

Aμ jμ ⇔ A ∧ Jd−1

Equation of motion:

Total charge:
Q = ∫ dd−1x j0 ⇔ Q = ∫Md−1

J

∂μFμν = jν ⇔ d(⋆F) = J

A current is gauged when it is exact, not just closed. 
Gauging removes currents from the cohomology.

Disclaimer:
 
I’m being sloppy 
by not writing 
the 
factors, but they 
all work out so 
the equations on 
the right are 
exactly correct.
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Ordinary Global Symmetries
For an ordinary U(1) global symmetry in Euclidean d-dimensional spacetime, 
we can associated a charge with any (d−1)-dimensional submanifold, 

Q = ∫Md−1

J ∈ ℤ

In the quantum theory, this means that we have a family of operators,

Uα(Md−1) = exp (iα∫Md−1

J) .

These operators are topological: if a charged local operator is inserted in the 
theory, then the state picks up a phase when this operator crosses through 
the surface .Md−1

associated to codimension-1 surfaces.



Ordinary Global Symmetries

Uα(Md−1)

V(x)

~

V(x)

exp(iαq)

When a local operator  of charge  crosses the surface operator associated 
with the element  of the global group U(1), it gains a phase 

V(x) q
exp(iα) exp(iqα)

When the operator  is constructed out of the conserved current , this is 
familiar. 

This formulation also works nicely for discrete symmetries, which have 
no local conserved current.

U jμ

Uα(Md−1)



Generalized Global Symmetries
(Figure from a nice talk by Tom Rudelius at the 2019 Madrid workshop “Navigating the Swampland”)

representation of g



Generalized Global Symmetries

A p-form  global symmetry has:

• Charge/symmetry operators  which are topological  

• Charged operators  associated with -dimensional manifolds, which 
can be “linked” with the charge operators on ( )-manifolds. 

• Dynamical charged objects with ( )-dimensional worldvolumes. 

• Continuous : local conserved ( )-form currents  

• Group law  

• If , the only symmetries acting nontrivially are abelian

G

Ug(M(d−p−1))

V(Mp) p
d − p − 1

p + 1

G d − p − 1 J

Ug(Md−p−1)Ug′ (Md−p−1) = Ugg′ (Md−p−1)

p > 0

arXiv:1412.5148 by Gaiotto, Kapustin, Seiberg, and Willett



1-form Symmetries of U(1) Gauge Theory
In free Maxwell theory, we have no electric or magnetic sources, so

dF = 0 Closed 2-form current
⟹ Global 1-form symmetry

d(⋆F) = 0 Closed (d−2)-form current
⟹ Global (d−3)-form symmetry

The quantization of fluxes means that these are both U(1) symmetries.
In 4d, they are both 1-form global symmetries.

• Electric symmetry, current ★ F, charged objects are Wilson loops.
• Magnetic symmetry, current F, charged objects are ’t Hooft loops.

The symmetries basically count Wilson or ’t Hooft loops.



figure from Tom Rudelius

Existence of charged particles vs. 
presence of global symmetries

d(⋆F) = J Charged particles break the 1-form 
symmetry’s conservation law 
(while gauging a 0-form symmetry with current J)

The symmetry operators exist, but are no longer topological. Wilson 
operators can end on local operators that create charged particles.

Wilson lines can end ⟺ 1-form electric symmetry is explicitly broken.



The WGC from no global symmetries?
For a U(1) gauge theory: absence of the 1-form generalized global 
symmetry requires electrically charged particles to exist. 
 
Clay Córdova, Kantaro Ohmori, and Tom Rudelius (forthcoming work): 
 
Asking that the 1-form symmetry be badly broken at the QG cutoff 
energy requires a tower of charged particles that parametrically 
obey the WGC. 
 

⇒∑
ψ∈tower ψ

 deviating strongly from  for V(r) 1/r
r ∼ Λ−1

QG

⇒  is far 

from topological in the UV

Uα(M) ∼ exp(iα∫M
⋆ F)

(Effectively, reproduce the strong coupling argument for Tower WGC [Heidenreich, MR, Rudelius ’17].)
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Conservation of Chern-Weil currents
In an abelian gauge theory, if  (no magnetic monopoles), thendF = 0

d(F ∧ F) = dF ∧ F + F ∧ dF = 0,

so  is a conserved 4-form current, and generates a ( )-form 
symmetry. It is broken if magnetic monopoles exist (but the story is not 
so simple—stay tuned).

F ∧ F d − 5

A generalization is true in nonabelian gauge theories:

d tr(F ∧ F) = tr(dF ∧ F + F ∧ dF)
= tr((dF + [A, F]) ∧ F + F ∧ (dF + [A, F]))
= tr(dAF ∧ F + F ∧ dAF) = 0

This is a lemma in the construction of the Chern-Weil homomorphism, an 
important step in the theory of characteristic classes.



Conservation of Chern-Weil currents
More generally, we have a family of conservation laws,

d tr (⋀
k
F) = 0

Here ∧k F denotes F ∧ F ∧ … ∧ F, with k copies of F.

These conservation laws all follow from the nonabelian Bianchi identity,

dAF ≡ dF + [A, F] = 0

Each (2k)-form conserved current means there is a generalized (d − 2k − 1)-
form global symmetry, which we call a Chern-Weil global symmetry.



Chern-Weil global symmetries 
vs. quantum gravity?

Chern-Weil global symmetries are ubiquitous in gauge theories. 
They are not easy to break, as they follow from the Bianchi identity.

In 5 dimensions, this becomes an honest 0-form global symmetry and 
instantons are particles that carry a conserved charge.

Quantum gravity cannot have global symmetries. How does it remove 
these apparent Chern-Weil global symmetries?

In 4 dimensions, the current  is a 4-form, so it is trivially 
conserved. Nonetheless, there is a sense in which it generates a U(1) 
global “(−1)-form symmetry,” because it has quantized (integer) 
integrals (periods). The charge is instanton number.

tr(F ∧ F)



Chern-Weil meets ’t Hooft-Polyakov
Consider d-dimensional SU(2) gauge theory higgsed to U(1) with an 
adjoint VEV. This theory contains the semiclassical, ’t Hooft-Polyakov 
magnetic monopole, whose worldvolume has codimension 3. 
(We consider d ≥ 4; the case d = 4 is somewhat degenerate, but I think it 
does make sense.)

UV: d tr(F ∧ F) = 0 Conserved 4-form current

IR: d (F ∧ F) = 2 Jmag ∧ F

Broken 4-form current, due to monopoles

So, it appears that the Higgsing process has eliminated the symmetry 
from our IR theory.



Dyons and ’t Hooft-Polyakov
However, the story is more interesting. The classical ’t Hooft-Polyakov 
monopole solution has collective coordinates or zero modes.

The obvious zero modes are translations. However, there is a less obvious 
one, corresponding to a global U(1) rotation. This is realized as a compact 
scalar boson 𝜎 living on the monopole worldvolume.

In the 4d case, 𝜎 is described by the QM of a particle on a circle, which 
has a spectrum labeled by integers. Exciting this particle above its ground 
state transforms the monopole into a dyon, and the integer is the 
electric charge. 𝜎 shifts under U(1) gauge transformations.

For d > 4, 𝜎 is still a compact scalar, described by a QFT on the monopole 
worldvolume.

[Julia, Zee ’75; Jackiw, ’76; Tomboulis, Woo ’76; Christ, Guth, Weinberg ’76]



Chern-Weil, Dyons, and ’t Hooft-Polyakov

You can think of Jmag as the delta functions that localize the latter coupling 
on the worldline. Thus, the existence of the monopole breaks the 
conservation law of F ∧ F, but it preserves another closed 4-form current, 

We can gauge the SU(2) Chern-Weil current by adding a (d − 4)-form 
gauge field C with a (Chern-Simons) coupling, 

1
8π2

C ∧ tr(F ∧ F) .

After Higgsing, this coupling is inherited not only by the U(1) gauge field but 
by the theory on the monopole worldline:

C ∧ F ∧ F − C ∧ dAσ ∧ Jmag

d [F ∧ F − dAσ ∧ Jmag] = 0.

(I am not being careful about normalization of the terms here and subsequently)

This current had to exist, or our gauging with C would have been 
inconsistent!



Chern-Weil and the Witten effect
In the 4d case, C is a “0-form gauge field”, which is to say, a periodic 
scalar boson—an axion! 1

8π2
θ tr(F ∧ F) .

The localized coupling on the monopole worldline, that is, the familiar theta 
term of a particle on a circle in QM,

θ dAσ
serves to implement the Witten effect: magnetic monopoles acquire an 
electric charge when a theta angle is turned on,

qel = qmag
θ

2π
.

We see that this whole story fits together nicely: the Witten effect is essential 
in order to allow us to consistently gauge the Chern-Weil symmetry of the 
nonabelian theory.



Chern-Weil gauging on D-branes
In string theory, gauge fields can live on a stack of Dp-branes, which have a 
(p+1)-dimensional worldvolume. In these cases, we always find that the 
Chern-Weil current  is gauged by a closed string ( )-form field:tr(F ∧ F) p − 3

Cp−3 ∧ tr(F ∧ F)

So far, so good. But this field actually propagates into the bulk, where it 
couples to lower-dimensional membranes, so a more complete story is:

Cp−3 ∧ [tr(F ∧ F) ∧ JDp + JD(p−4)]
Where  is a ( )-form (the number of delta functions needed to 
localize on the brane).

JDq 9 − q



Chern-Weil gauging on D-branes
If the closed string gauge field  is gauging the current in brackets,Cp−3

Cp−3 ∧ [tr(F ∧ F) ∧ JDp + JD(p−4)]
then what happens to the other linear combination of these two 
conserved currents?

The answer is a well-known effect in string theory: zero-size Yang-Mills 
instantons on the Dp-brane are the same thing as D(p − 4)-branes. 
(Witten ’95; Douglas ’95; Green, Harvey, Moore ’96).

YM ⟷ ⟷

Dp Dp Dp

D(p−4)“Gauging and breaking”



Chern-Weil and GUTs
Consider a nonabelian gauge group that is higgsed to a product group, as in 
the SM embedding in a GUT, for instance:

SU(5) → SU(3) × SU(2) × U(1)

The IR theory has more Chern-Weil currents than the UV theory. Some of 
these are “accidental”: selecting out SU(3) within SU(5) requires Higgs 
insertions, so the IR  contains Higgses in the UV theory, and 
d(Higgs) is nonzero.

tr(F ∧ F)

An IR theorist might overcount Chern-Weil symmetries and expect more 
gauge fields (or axions). However, there will always be at least one. This UV 
explicit breaking of IR Chern-Weil symmetries only happens for “unifiable” 
gauge groups.



Summary of examples

Once you start looking for Chern-Weil symmetries and mechanisms 
to remove them, you get a fresh perspective on many familiar 
phenomena.

Chern-Weil symmetries are ubiquitous in gauge theories. They are 
not easy to eliminate.

String theory removes many Chern-Weil symmetries by gauging via 
Chern-Simons terms. This might even be thought of as the reason 
why C-S terms are so generic in string theory. 

Often, Chern-Weil symmetries are broken to the diagonal with 
another current through intrinsically stringy UV effects, e.g., 
turning YM instantons into branes.

[see also: “Chern-Simons pandemic”, Montero, Uranga, Valenzuela ’17]



Implications for axion physics

If SM gauge fields propagate in higher dimensions, the  terms are 
symmetry currents. Expect at least one combination to be gauged. 
Reducing to 4d, this gives an axionic coupling,  

tr(F ∧ F)

1
8π2

θ tr(F ∧ F) .

to a fundamental axion (compact scalar). 

Even in 4d, the notion of a U(1) (−1)-form global symmetry may be well-
defined and require such couplings, though this is subtle.

String theory examples with axions coupling to  are common. 
Chern-Weil symmetry perspective sheds light on why—not just “looking 
under the lamp post.”

tr(F ∧ F)



Implications for axion physics

The Chern-Weil perspective ameliorates this worry. Given two kinds of  
instantons, either we expect two independent axions, or the different 
kinds of instantons can be transformed into each other.

Suggests we only worry about gauge sectors “unifiable” with QCD.

(Not a complete solution to the problem; e.g., what about  terms?)θdC3

A  common concern about axions for solving strong CP is the axion 
quality problem: misaligned contributions to the potential could lead to 
strong CP violation.

Λ4
UV [e−SQCD+iθ + e−Sother+iθ+iϕ + h . c . ]

If ϕ ≠ 0, need Sother ≫ SQCD .



Conclusions



Some messages to take away

The absence of charged particles often leads to generalized global 
symmetries (or related topological operators [Rudelius, Shao ’20]).

Towers of charged particles guarantee that 1-form symmetries are badly 
broken at the Planck scale.

Chern-Weil global symmetries are ubiquitous in gauge theories. In 
gravitational theories, they must be gauged or broken.

Often they are gauged via Chern-Simons couplings. Suggestive of why 
axions are necessary in QG.

Future: what does it mean for those to be “badly broken”? What are 
implications for axion physics?


