Chern-Weil Symmetries and how gravity avoids them

Matt Reece
Harvard University
Oct. 14, 2020
KITP "UV Meets the IR" Conference

collaborators:

Ben Heidenreich, Jake McNamara, Miguel Montero, Tom Rudelius, and Irene Valenzuela

1. Generalized Global Symmetries and the Weak Gravity Conjecture

2. Chern-Weil Global Symmetries and the Necessity of Axions

Review: differential forms for currents

Conserved current: $\partial_{\mu}j^{\mu}=0$

Rewrite in terms of (d-1)-form $J = \star j$:

$$J_{\mu_1\cdots\mu_{d-1}} = \varepsilon_{\mu_1\cdots\mu_d} j^{\mu_d}$$
 and $\partial_{\mu} j^{\mu} = 0 \Rightarrow \mathrm{d}J = 0.$

Conserved currents ⇔ **Closed forms** (related by ★)

Total charge:

$$Q = \int \mathrm{d}^{d-1} x j^0 \quad \Leftrightarrow \quad Q = \int_{M_{d-1}} J$$

Gauging a conserved current:

$$A_{\mu}j^{\mu} \Leftrightarrow A \wedge J_{d-1}$$

Equation of motion:

$$\partial^{\mu} F_{\mu\nu} = j_{\nu} \quad \Leftrightarrow \quad d(\star F) = J$$

A current is gauged when it is *exact*, not just *closed*. Gauging removes currents from the cohomology.

Review: differential forms for currents

Conserved current: $\partial_{\mu}j^{\mu}=0$

Rewrite in terms of (d-1)-form $J=\star j$:

$$J_{\mu_1\cdots\mu_{d-1}} = \varepsilon_{\mu_1\cdots\mu_d} j^{\mu_d}$$
 and $\partial_{\mu} j^{\mu} = 0 \Rightarrow \mathrm{d}J = 0.$

Conserved currents ⇔ **Closed forms** (related by ★)

Total charge:

$$Q = \int \mathrm{d}^{d-1} x j^0 \quad \Leftrightarrow \quad Q = \int_{M_{d-1}} J$$

Gauging a conserved current:

$$A_{\mu}j^{\mu} \Leftrightarrow A \wedge J_{d-1}$$

Equation of motion:

$$\partial^{\mu} F_{\mu\nu} = j_{\nu} \quad \Leftrightarrow \quad d(\star F) = J$$

A current is gauged when it is *exact*, not just *closed*. Gauging removes currents from the cohomology.

Disclaimer:

I'm being sloppy by not writing the $\sqrt{|\det g|}$ factors, but they all work out so the equations on the right are exactly correct.

Ordinary Global Symmetries

For an ordinary U(1) global symmetry in Euclidean *d*-dimensional spacetime, we can associated a charge with *any* (*d*–1)-dimensional submanifold,

$$Q = \int_{M_{d-1}} J \in \mathbb{Z}$$

In the quantum theory, this means that we have a family of *operators*,

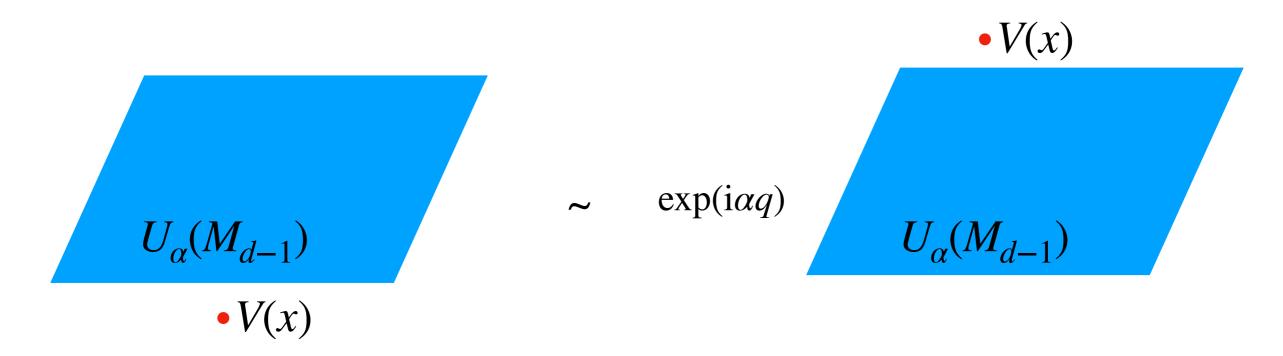
$$U_{\alpha}(M_{d-1}) = \exp\left(i\alpha \int_{M_{d-1}} J\right).$$

associated to codimension-1 surfaces.

These operators are *topological*: if a charged local operator is inserted in the theory, then the state picks up a phase when this operator **crosses through** the surface M_{d-1} .

Ordinary Global Symmetries

When a local operator V(x) of charge q crosses the surface operator associated with the element $\exp(i\alpha)$ of the global group U(1), it gains a phase $\exp(iq\alpha)$

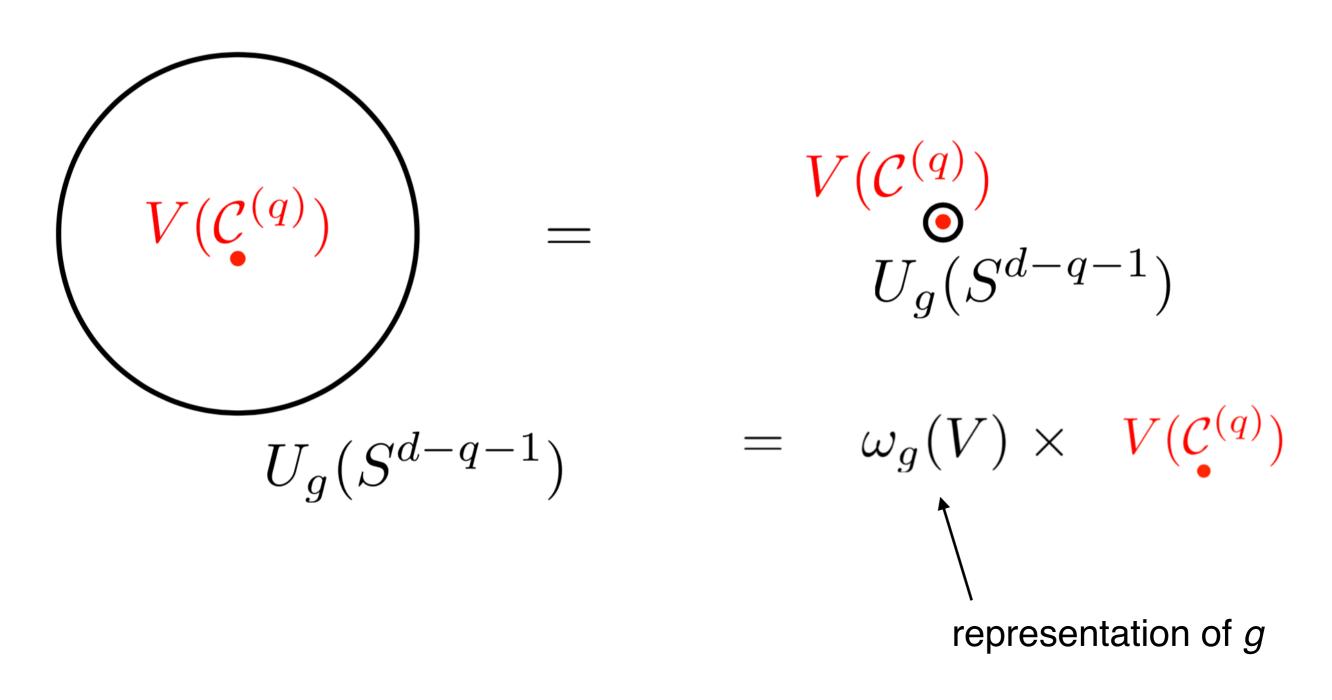


When the operator U is constructed out of the conserved current j^{μ} , this is familiar.

This formulation also works nicely for discrete symmetries, which have no local conserved current.

Generalized Global Symmetries

(Figure from a nice talk by Tom Rudelius at the 2019 Madrid workshop "Navigating the Swampland")



Generalized Global Symmetries

arXiv:1412.5148 by Gaiotto, Kapustin, Seiberg, and Willett

A p-form G global symmetry has:

- Charge/symmetry operators $U_{g}(M_{(d-p-1)})$ which are topological
- Charged operators $V(M_p)$ associated with p-dimensional manifolds, which can be "linked" with the charge operators on (d-p-1)-manifolds.
- Dynamical charged *objects* with (p+1)-dimensional worldvolumes.
- Continuous G: local conserved (d-p-1)-form currents J
- . Group law $U_g(M_{d-p-1})U_{g'}(M_{d-p-1})=U_{gg'}(M_{d-p-1})$
- If p > 0, the only symmetries acting nontrivially are **abelian**

1-form Symmetries of U(1) Gauge Theory

In free Maxwell theory, we have no electric or magnetic sources, so

$$d(\star F) = 0$$
 Closed (d-2)-form current \Longrightarrow Global (d-3)-form symmetry

$$\mathrm{d}F = 0$$
 Closed 2-form current \Longrightarrow Global 1-form symmetry

The quantization of fluxes means that these are both U(1) symmetries. In 4d, they are both 1-form global symmetries.

- Electric symmetry, current ★ F, charged objects are Wilson loops.
- Magnetic symmetry, current F, charged objects are 't Hooft loops.

The symmetries basically *count* Wilson or 't Hooft loops.

Existence of charged particles vs. presence of global symmetries

$$d(\star F) = J$$

Charged particles break the *1-form* symmetry's conservation law (while gauging a *0-form symmetry* with current *J*)

The symmetry operators *exist*, but are no longer topological. Wilson operators can end on local operators that create charged particles.

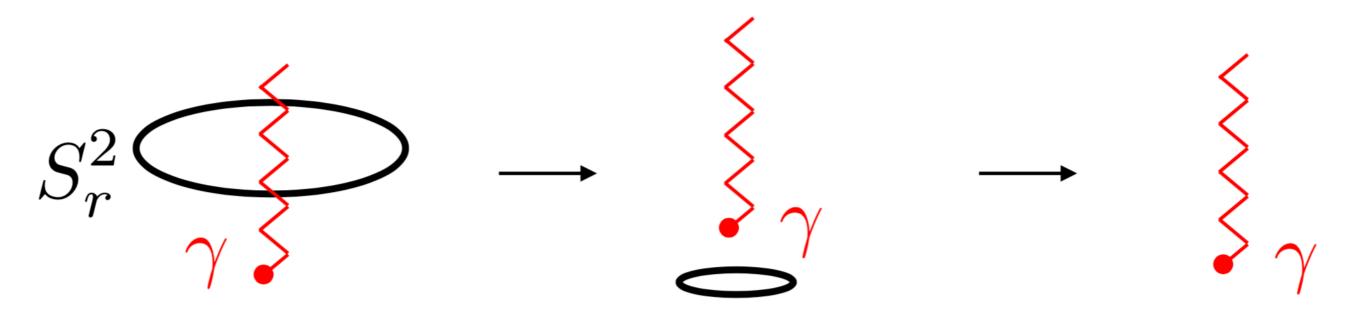


figure from Tom Rudelius

Wilson lines can $end \iff$ 1-form electric symmetry is *explicitly broken*.

The WGC from no global symmetries?

For a U(1) gauge theory: absence of the 1-form generalized global symmetry requires electrically charged particles to exist.

Clay Córdova, Kantaro Ohmori, and Tom Rudelius (forthcoming work):

Asking that the 1-form symmetry be badly broken at the QG cutoff energy requires a tower of charged particles that parametrically obey the WGC.

$$\sum_{\psi \in \text{tower}} \longrightarrow V(r) \text{ deviating strongly from } 1/r \text{ for } r \sim \Lambda_{\text{QG}}^{-1}$$

$$\longrightarrow U_{\alpha}(M) \sim \exp(\mathrm{i}\alpha \int_{M} \star F) \text{ is far }$$
 from topological in the UV

(Effectively, reproduce the strong coupling argument for Tower WGC [Heidenreich, MR, Rudelius '17].)

1. Generalized Global Symmetries and the Weak Gravity Conjecture

2. Chern-Weil Global Symmetries and the Necessity of Axions

work in preparation with Ben Heidenreich, Jake McNamara, Miguel Montero, Tom Rudelius, and Irene Valenzuela

Conservation of Chern-Weil currents

In an abelian gauge theory, if $\mathrm{d}F=0$ (no magnetic monopoles), then

$$d(F \wedge F) = dF \wedge F + F \wedge dF = 0,$$

so $F \wedge F$ is a conserved 4-form current, and generates a (d-5)-form symmetry. It is broken if magnetic monopoles exist (but the story is not so simple—stay tuned).

A generalization is true in nonabelian gauge theories:

$$d \operatorname{tr}(F \wedge F) = \operatorname{tr}(dF \wedge F + F \wedge dF)$$

$$= \operatorname{tr}\left((dF + [A, F]) \wedge F + F \wedge (dF + [A, F])\right)$$

$$= \operatorname{tr}(d_A F \wedge F + F \wedge d_A F) = 0$$

This is a lemma in the construction of the Chern-Weil homomorphism, an important step in the theory of characteristic classes.

Conservation of Chern-Weil currents

More generally, we have a family of conservation laws,

$$d\operatorname{tr}\left(\bigwedge^k F\right) = 0$$

Here $\bigwedge^k F$ denotes $F \wedge F \wedge ... \wedge F$, with k copies of F.

These conservation laws all follow from the nonabelian Bianchi identity,

$$d_A F \equiv dF + [A, F] = 0$$

Each (2k)-form conserved current means there is a generalized (d - 2k - 1)-form global symmetry, which we call a *Chern-Weil global symmetry*.

Chern-Weil global symmetries vs. quantum gravity?

Chern-Weil global symmetries are ubiquitous in gauge theories.

They are not easy to break, as they follow from the Bianchi identity.

In 4 dimensions, the current $\operatorname{tr}(F \wedge F)$ is a 4-form, so it is trivially conserved. Nonetheless, there is a sense in which it generates a U(1) global "(-1)-form symmetry," because it has quantized (integer) integrals (periods). The charge is **instanton number**.

In 5 dimensions, this becomes an honest 0-form global symmetry and instantons are particles that carry a conserved charge.

Quantum gravity cannot have global symmetries. How does it remove these apparent Chern-Weil global symmetries?

Chern-Weil meets 't Hooft-Polyakov

Consider *d*-dimensional SU(2) gauge theory higgsed to U(1) with an adjoint VEV. This theory contains the semiclassical, 't Hooft-Polyakov magnetic monopole, whose worldvolume has codimension 3. (We consider $d \ge 4$; the case d = 4 is somewhat degenerate, but I think it does make sense.)

UV:
$$d \operatorname{tr}(F \wedge F) = 0$$
 Conserved 4-form current

IR:
$$d(F \wedge F) = 2J_{\text{mag}} \wedge F$$

Broken 4-form current, due to monopoles

So, it appears that the Higgsing process has eliminated the symmetry from our IR theory.

Dyons and 't Hooft-Polyakov

However, the story is more interesting. The classical 't Hooft-Polyakov monopole solution has **collective coordinates** or **zero modes**.

The obvious zero modes are translations. However, there is a less obvious one, corresponding to a global U(1) rotation. This is realized as a *compact* scalar boson σ living on the monopole worldvolume.

In the 4d case, σ is described by the QM of a particle on a circle, which has a spectrum labeled by integers. Exciting this particle above its ground state **transforms the monopole into a dyon**, and the integer is the electric charge. σ shifts under U(1) gauge transformations.

For d > 4, σ is still a compact scalar, described by a *QFT* on the monopole worldvolume.

[Julia, Zee '75; Jackiw, '76; Tomboulis, Woo '76; Christ, Guth, Weinberg '76]

Chern-Weil, Dyons, and 't Hooft-Polyakov

We can *gauge* the SU(2) Chern-Weil current by adding a (d - 4)-form gauge field C with a (Chern-Simons) coupling,

$$\frac{1}{8\pi^2}C\wedge\operatorname{tr}(\mathsf{F}\wedge\mathsf{F}).$$

After Higgsing, this coupling is inherited not only by the U(1) gauge field but by the theory on the monopole worldline:

$$C \wedge F \wedge F - C \wedge d_A \sigma \wedge J_{\text{mag}}$$

(I am not being careful about normalization of the terms here and subsequently)

You can think of J_{mag} as the delta functions that localize the latter coupling on the worldline. Thus, the existence of the monopole breaks the conservation law of $F \land F$, but it *preserves* another closed 4-form current,

$$d\left[F \wedge F - d_A \sigma \wedge J_{\text{mag}}\right] = 0.$$

This current had to exist, or our gauging with *C* would have been inconsistent!

Chern-Weil and the Witten effect

In the 4d case, *C* is a "**0-form gauge field**", which is to say, a periodic scalar boson—**an axion!**

 $\frac{1}{8\pi^2}\theta \operatorname{tr}(F \wedge F)$.

The localized coupling on the monopole worldline, that is, the familiar theta term of a particle on a circle in QM,

$$\theta d_A \sigma$$

serves to implement the Witten effect: magnetic monopoles acquire an electric charge when a theta angle is turned on,

$$q_{\rm el} = q_{\rm mag} \frac{\theta}{2\pi}$$
.

We see that this whole story fits together nicely: the Witten effect is essential in order to allow us to consistently gauge the Chern-Weil symmetry of the nonabelian theory.

Chern-Weil gauging on D-branes

In string theory, gauge fields can live on a stack of Dp-branes, which have a (p+1)-dimensional worldvolume. In these cases, we always find that the Chern-Weil current $tr(F \wedge F)$ is gauged by a closed string (p-3)-form field:

$$C_{p-3} \wedge \operatorname{tr}(F \wedge F)$$

So far, so good. But this field actually propagates into the bulk, where it couples to lower-dimensional membranes, so a more complete story is:

$$C_{p-3} \wedge \left[\operatorname{tr}(F \wedge F) \wedge J_{Dp} + J_{D(p-4)} \right]$$

Where J_{Dq} is a (9-q)-form (the number of delta functions needed to localize on the brane).

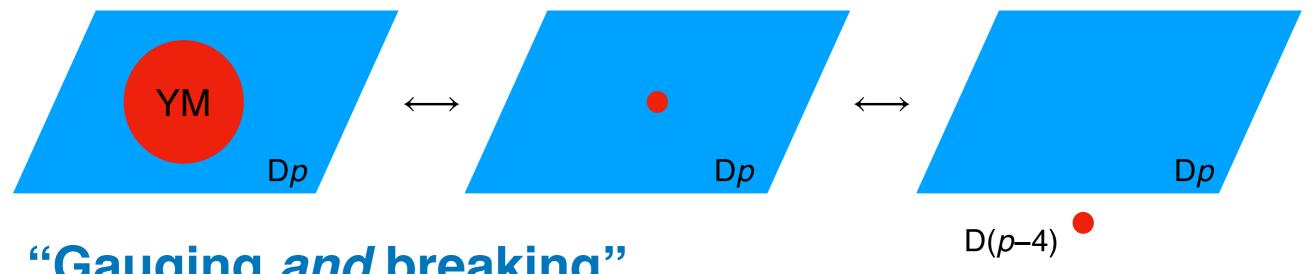
Chern-Weil gauging on D-branes

If the closed string gauge field C_{p-3} is gauging the current in brackets,

$$C_{p-3} \wedge \left[\operatorname{tr}(F \wedge F) \wedge J_{Dp} + J_{D(p-4)} \right]$$

then what happens to the other linear combination of these two conserved currents?

The answer is a well-known effect in string theory: zero-size Yang-Mills instantons on the Dp-brane are the same thing as D(p - 4)-branes. (Witten '95; Douglas '95; Green, Harvey, Moore '96).



"Gauging and breaking"

Chern-Weil and GUTs

Consider a nonabelian gauge group that is higgsed to a product group, as in the SM embedding in a GUT, for instance:

$$SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$$

The IR theory has more Chern-Weil currents than the UV theory. Some of these are "accidental": selecting out SU(3) within SU(5) requires Higgs insertions, so the IR $\operatorname{tr}(F \wedge F)$ contains Higgses in the UV theory, and d(Higgs) is nonzero.

An IR theorist might overcount Chern-Weil symmetries and expect more gauge fields (or axions). However, there will always be at least one. This UV explicit breaking of IR Chern-Weil symmetries only happens for "unifiable" gauge groups.

Summary of examples

Once you start looking for Chern-Weil symmetries and mechanisms to remove them, you get a fresh perspective on many familiar phenomena.

Chern-Weil symmetries are ubiquitous in gauge theories. They are not easy to eliminate.

String theory removes many Chern-Weil symmetries by **gauging via Chern-Simons terms**. This might even be thought of as the reason why C-S terms are so generic in string theory.

Often, Chern-Weil symmetries are broken to the diagonal with another current through **intrinsically stringy UV effects**, e.g., turning YM instantons into branes.

[see also: "Chern-Simons pandemic", Montero, Uranga, Valenzuela '17]

Implications for axion physics

If SM gauge fields propagate in higher dimensions, the $tr(F \land F)$ terms are symmetry currents. Expect at least one combination to be gauged. Reducing to 4d, this gives an axionic coupling,

$$\frac{1}{8\pi^2}\theta \operatorname{tr}(F \wedge F)$$
.

to a fundamental axion (compact scalar).

Even in 4d, the notion of a U(1) (-1)-form global symmetry may be well-defined and require such couplings, though this is subtle.

String theory *examples* with axions coupling to $tr(F \land F)$ are common. Chern-Weil symmetry perspective sheds light on *why*—not just "looking under the lamp post."

Implications for axion physics

A common concern about axions for solving strong CP is the **axion quality problem**: misaligned contributions to the potential could lead to strong CP violation.

$$\Lambda_{\rm UV}^4 \left[e^{-S_{\rm QCD} + i\theta} + e^{-S_{\rm other} + i\theta + i\phi} + h.c. \right]$$

If
$$\phi \neq 0$$
, need $S_{\text{other}} \gg S_{\text{QCD}}$.

The Chern-Weil perspective ameliorates this worry. Given two kinds of instantons, **either** we expect two independent axions, **or** the different kinds of instantons can be transformed into each other.

Suggests we only worry about gauge sectors "unifiable" with QCD.

(Not a complete solution to the problem; e.g., what about θdC_3 terms?)

Conclusions

Some messages to take away

The absence of charged particles often leads to generalized global symmetries (or related topological operators [Rudelius, Shao '20]).

Towers of charged particles guarantee that 1-form symmetries are badly broken at the Planck scale.

Chern-Weil global symmetries are ubiquitous in gauge theories. In gravitational theories, they must be gauged or broken.

Often they are gauged via Chern-Simons couplings. Suggestive of why axions are necessary in QG.

Future: what does it mean for those to be "badly broken"? What are implications for axion physics?