Integer Quantum Hall Edge States Out of Equilibrium

John Chalker

Physics Department, Oxford University

Work with Dmitry Kovrizhin, in preparation

and: PRB 81 (2010), PRB 80 (2009)

Earlier collaboration: Y. Gefen and M. Veillette, PRB 76 (2007)

Outline

Experimental motivation

QH Mach-Zehnder interferometers out of equilibrium

Generating & observing evolution of

non-equilibrium electron distribution in QHE edge states

Theoretical Idealisation

Time evolution of electron momentum distribution

Results

- Non-thermal steady state
- Interaction effects in MZ interferometers

Quantum Hall Edge States

Classical skipping orbits

Quantum edge states

Two-dimensional electron gas in magnetic field

Edge state Hamiltonian: $\mathcal{H} = \int \psi^{\dagger}(x) (-i\hbar v \partial_x) \psi(x) dx$

Edge State Interferometer Design

Fabry-Perot

Mach-Zehnder

Edge State Interferometer Design

Fabry-Perot

Mach-Zehnder

Edge State Interferometer Design

Fabry-Perot

Mach-Zehnder

Experimental system

Heiblum Group, Weizmann Institute

Ji et al., Nature (2003)

Fringes in Edge State Interferometer

 G_{SD} vs $Flux \ density$ and Area

Interferometer out of equilibrium

Decoherence from inelastic scattering

Surprises from experiment

Oscillatory dependence of visibility on bias

Differential conductance $G(\Phi_{AB}) = G_0 + G_1 \cos(\Phi_{AB})$

Fringe visibility $\mathcal{V} = |G_1|/G_0$

Neder et al., PRL (2006)

Also Regensburg, Basel and Saclay groups

Focussing on non-equilibrium aspects

Experiment – Actual

le Sueur, Altimiras, Gennser, Cavanna, Mailly & Pierre, PRL (2010)

Sample Design

Evolution of Distribution

Theoretical Idealisation

Evade treatment of point contact - treat quantum quench Study time evolution in translationally-invariant edge

For approx theory with QPC see: Lunde *et al*, (2010) & Degiovanni *et al* (2010)

Standard model of edge states at $\nu = 1$ & initial state As electrons

$$\mathcal{H} = -i\hbar v \int \mathrm{d}x \psi^{\dagger}(x) \partial_x \psi(x) + \int \mathrm{d}x \int \mathrm{d}x' \ U(x - x') \rho(x) \rho(x')$$

As collective modes

$$\begin{split} \mathcal{H} &= \sum_{q} \hbar \omega(q) b_{q}^{\dagger} b_{q} \qquad \qquad \omega(q) = \left[v + u(q) \right] q \\ & u(q) = (2\pi\hbar)^{-1} \int \mathrm{d}x \ e^{iqx} \, U(x) \end{split} \\ \end{split}$$
 For $\nu > 2 \qquad \psi(x) \to \psi_{n}(x) \qquad n = 1, \dots \nu$

Physical picture of equilibration

Edge magnetosplasmon Hamiltonian $\mathcal{H} = \sum_{nq} \hbar \omega_n(q) b_{nq}^{\dagger} b_{nq}$

Plasmon dispersion \rightarrow **electron equilibration?**

Initial quasi-particle separation $s = \hbar v / eV$

Equilibration when wavepacket spread $l(t) \geq s$

Equilibration from two mode velocities Contact interactions at $\nu = 2$

Edge Hamiltonian ${\cal H}=\sum_{nq}\hbar\omega_n(q)b_{nq}^\dagger b_{nq}$ Two linearly dispersing modes $\omega_1(q)=v^{(+)}q$ & $\omega_2(q)=v^{(-)}q$

Initial quasi-particle separation $s = \hbar v / eV$

Equilibration when wavepacket spread $l(t) \gtrsim s$

Spread
$$l(t) = [v^+ - v^-]t$$

Equilibration time: $t_{eq} \sim \frac{\hbar}{eV} \cdot \frac{v^+ + v^-}{v^+ - v^-}$

Equilibration from single mode dispersion

Finite range interactions at $\nu = 1$

Edge Hamiltonian $\mathcal{H} = \sum_{q} \hbar \omega(q) b_{q}^{\dagger} b_{q}$ Dispersion $\omega(q) = [v + u(q)] q \simeq vq - \frac{v}{b} (bq)^{3} \dots$ Wavepacket spread $l(t) \sim b(vt/b)^{1/3}$

Equilibration time $t_{\rm eq} \sim \left(\hbar/eV\right)^3 \cdot \left(v/b\right)^2$

Unscreened Coulomb interactions

What is the equilibrium state?

Characterise via one-electron correlations

Calculate
$$G(x,t) = \langle \psi^{\dagger}(x,t)\psi(0,t) \rangle$$

in thermal state $G(x,t) = [-2i\beta\hbar v\sinh(\pi [x+i0]/\beta\hbar v)]^{-1}$

What is the equilibrium state?

Characterise via one-electron correlations

Calculate
$$G(x,t) = \langle \psi^{\dagger}(x,t)\psi(0,t) \rangle$$

in thermal state $G(x,t) = [-2i\beta\hbar v\sinh(\pi [x+i0]/\beta\hbar v)]^{-1}$

Find $G(x,t) \propto \langle \exp(i \int dy K(x,t;y)\rho(y) \rangle$

Scaling form for kernel at long times

$$\begin{split} K(x,x/2-vt+\xi) &\sim F(x/l(t),\xi/l(t)) \\ \text{with} \quad l(t) &\sim \text{spread} \qquad \text{e.g. for single edge} \quad l(t) = b(vt/b)^{1/3} \end{split}$$

What is the equilibrium state?

Characterise via one-electron correlations

Calculate
$$G(x,t) = \langle \psi^{\dagger}(x,t)\psi(0,t) \rangle$$

in thermal state $G(x,t) = [-2i\beta\hbar v \sinh(\pi [x+i0]/\beta\hbar v)]^{-1}$

Find $G(x,t) \propto \langle \exp(i \int dy K(x,t;y)\rho(y) \rangle$

Scaling form for kernel at long times

$$K(x, x/2 - vt + \xi) \sim F(x/l(t), \xi/l(t))$$

with $l(t) \sim$ spread e.g. for single edge $l(t) = b(vt/b)^{1/3}$

Hence simple long-time limit

Find
$$G(x,t) \propto \exp(-\int dy C(x,y) \langle \rho(0)\rho(y) \rangle)$$

with $C(x,y) = \pi^2(|x+y| + |x-y| - 2|y|)$ indept of $U(x)$

Comparison with thermal state

Short-distance correlations

As in thermal state at same energy density

Long-distance correlations

 $G(x,t)\sim \exp(-lpha|x|)$ with lpha not fixed by energy density

Difference from thermal in steady state

p = 0.1, 0.2, 0.25, 0.3, 0.5

Example

Equilibration with two edge modes

Initial State

$$|\psi(t=0)\rangle = |\psi_{\text{channel }1}\rangle \bigotimes |\psi_{\text{channel }2}\rangle$$

Hamiltonian

$$H = \sum_{k} \hbar k \left[v_{1} a_{k}^{\dagger} a_{k} + v_{2} b_{k}^{\dagger} b_{k} + g(a_{k} b_{k}^{\dagger} + a_{k}^{\dagger} b_{k}) \right]$$
$$H = \sum_{k} \hbar k \left[v^{(+)} \alpha_{k}^{\dagger} \alpha_{k} + v^{(-)} \beta_{k}^{\dagger} \beta_{k} \right]$$

Mixing angle $\alpha_k = \cos \theta \ a_k + \sin \theta \ b_k$ $\tan 2\theta = g/2\hbar(v_1 - v_2)$

Results for $\nu = 2$

Calculate
$$G_n(x,t) = \langle \psi_n^{\dagger}(x,t)\psi_n(0,t) \rangle$$
 $n = 1,2$

In steady state:

Thermal at short distances, but with two effective temperatures

For channel 1
$$T_{\text{steady}} = \left[f T_{\text{initial 1}}^2 + (1 - f) T_{\text{initial 2}}^2 \right]^{1/2}$$

 $f = 1 - \frac{1}{2} \sin^2 2\theta$

Long-distance form

$$G_n(x,t) \sim \exp(-\alpha_n |x|)$$

Interchannel equilibration: • not complete $\alpha_1 \neq \alpha_2$

ullet not thermal – independent $lpha_1, lpha_2$ and T_{steady} for each channel

Summary - Relaxation in QH edges

'Quantum quench' on isolated edge is useful caricature of experiment with two edges coupled at QPC

- Interactions bring system into non-thermal steady state
- At $\nu = 1$ steady state is indept of interactions
- Correlation function in steady state is

functional of initial momentum distribution

• At $\nu = 2$ steady state depends on

coupling between channels and initial momentum distribution

• At $\nu = 2$ no equipartition of energy between channels